Deep Learning‐Based Segmentation and Risk Stratification for Gastrointestinal Stromal Tumors in Transabdominal Ultrasound Imaging

主旨 人工智能 医学 分割 接收机工作特性 试验装置 精确性和召回率 模式识别(心理学) 曲线下面积 深度学习 放射科 计算机科学 内科学 间质细胞 药代动力学
作者
Minling Zhuo,Xing Chen,Jingjing Guo,Qingfu Qian,Ensheng Xue,Zhikui Chen
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
卷期号:43 (9): 1661-1672 被引量:1
标识
DOI:10.1002/jum.16489
摘要

Purpose To develop a deep neural network system for the automatic segmentation and risk stratification prediction of gastrointestinal stromal tumors (GISTs). Methods A total of 980 ultrasound (US) images from 245 GIST patients were retrospectively collected. These images were randomly divided (6:2:2) into a training set, a validation set, and an internal test set. Additionally, 188 US images from 47 prospective GIST patients were collected to evaluate the segmentation and diagnostic performance of the model. Five deep learning‐based segmentation networks, namely, UNet, FCN, DeepLabV3+, Swin Transformer, and SegNeXt, were employed, along with the ResNet 18 classification network, to select the most suitable network combination. The performance of the segmentation models was evaluated using metrics such as the intersection over union (IoU), Dice similarity coefficient (DSC), recall, and precision. The classification performance was assessed based on accuracy and the area under the receiver operating characteristic curve (AUROC). Results Among the compared models, SegNeXt‐ResNet18 exhibited the best segmentation and classification performance. On the internal test set, the proposed model achieved IoU, DSC, precision, and recall values of 82.1, 90.2, 91.7, and 88.8%, respectively. The accuracy and AUC for GIST risk prediction were 87.4 and 92.0%, respectively. On the external test set, the segmentation models exhibited IoU, DSC, precision, and recall values of 81.0, 89.5, 92.8, and 86.4%, respectively. The accuracy and AUC for GIST risk prediction were 86.7 and 92.5%, respectively. Conclusion This two‐stage SegNeXt‐ResNet18 model achieves automatic segmentation and risk stratification prediction for GISTs and demonstrates excellent segmentation and classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mncvjs发布了新的文献求助10
3秒前
搜集达人应助哈哈采纳,获得30
3秒前
今年离开老登了完成签到,获得积分10
3秒前
6S6完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助150
4秒前
耍酷的冷雪完成签到,获得积分10
4秒前
怡然茗茗完成签到 ,获得积分10
4秒前
无聊的惜文完成签到 ,获得积分10
4秒前
Tina完成签到,获得积分10
9秒前
倾听阳光完成签到 ,获得积分10
9秒前
Double_N完成签到,获得积分10
11秒前
13秒前
fantexi113完成签到,获得积分0
13秒前
窦房结完成签到 ,获得积分10
13秒前
玩命的化蛹完成签到,获得积分10
14秒前
水硕完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助150
16秒前
xiaofeixia完成签到 ,获得积分10
17秒前
随便起个名完成签到,获得积分10
19秒前
HH完成签到,获得积分10
19秒前
chris完成签到,获得积分10
19秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
完美世界应助科研通管家采纳,获得150
20秒前
FashionBoy应助科研通管家采纳,获得30
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
隐形曼青应助科研通管家采纳,获得150
21秒前
乐乐应助科研通管家采纳,获得10
21秒前
美丽人生完成签到 ,获得积分10
21秒前
雨后完成签到 ,获得积分10
23秒前
Augenstern完成签到,获得积分10
23秒前
溆玉碎兰笑完成签到 ,获得积分10
25秒前
李大胖胖完成签到 ,获得积分10
25秒前
Edou完成签到 ,获得积分10
25秒前
2275523154完成签到,获得积分10
26秒前
豆浆来点蒜泥完成签到,获得积分10
27秒前
简单完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助150
30秒前
nan完成签到,获得积分10
30秒前
Hh完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5093339
求助须知:如何正确求助?哪些是违规求助? 4306976
关于积分的说明 13417433
捐赠科研通 4133171
什么是DOI,文献DOI怎么找? 2264356
邀请新用户注册赠送积分活动 1268004
关于科研通互助平台的介绍 1203813