Deep Learning‐Based Segmentation and Risk Stratification for Gastrointestinal Stromal Tumors in Transabdominal Ultrasound Imaging

主旨 人工智能 医学 分割 接收机工作特性 试验装置 精确性和召回率 模式识别(心理学) 曲线下面积 深度学习 放射科 计算机科学 内科学 间质细胞 药代动力学
作者
Minling Zhuo,Xing Chen,Jingjing Guo,Qingfu Qian,Ensheng Xue,Zhikui Chen
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
卷期号:43 (9): 1661-1672 被引量:1
标识
DOI:10.1002/jum.16489
摘要

Purpose To develop a deep neural network system for the automatic segmentation and risk stratification prediction of gastrointestinal stromal tumors (GISTs). Methods A total of 980 ultrasound (US) images from 245 GIST patients were retrospectively collected. These images were randomly divided (6:2:2) into a training set, a validation set, and an internal test set. Additionally, 188 US images from 47 prospective GIST patients were collected to evaluate the segmentation and diagnostic performance of the model. Five deep learning‐based segmentation networks, namely, UNet, FCN, DeepLabV3+, Swin Transformer, and SegNeXt, were employed, along with the ResNet 18 classification network, to select the most suitable network combination. The performance of the segmentation models was evaluated using metrics such as the intersection over union (IoU), Dice similarity coefficient (DSC), recall, and precision. The classification performance was assessed based on accuracy and the area under the receiver operating characteristic curve (AUROC). Results Among the compared models, SegNeXt‐ResNet18 exhibited the best segmentation and classification performance. On the internal test set, the proposed model achieved IoU, DSC, precision, and recall values of 82.1, 90.2, 91.7, and 88.8%, respectively. The accuracy and AUC for GIST risk prediction were 87.4 and 92.0%, respectively. On the external test set, the segmentation models exhibited IoU, DSC, precision, and recall values of 81.0, 89.5, 92.8, and 86.4%, respectively. The accuracy and AUC for GIST risk prediction were 86.7 and 92.5%, respectively. Conclusion This two‐stage SegNeXt‐ResNet18 model achieves automatic segmentation and risk stratification prediction for GISTs and demonstrates excellent segmentation and classification performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dongge完成签到,获得积分10
刚刚
锐意完成签到,获得积分10
1秒前
1秒前
李健应助日暮倚修竹采纳,获得10
1秒前
2秒前
大模型应助王小姚采纳,获得10
2秒前
先生范完成签到,获得积分10
3秒前
诚心的遥发布了新的文献求助30
3秒前
顺利的白昼完成签到,获得积分20
3秒前
九安发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
11111完成签到,获得积分10
4秒前
4秒前
Archer完成签到,获得积分10
5秒前
hzh666发布了新的文献求助10
5秒前
木南发布了新的文献求助10
5秒前
香蕉觅云应助于冰清采纳,获得10
5秒前
Xiao完成签到,获得积分10
6秒前
谷云发布了新的文献求助10
7秒前
7秒前
小陈同学应助megumi采纳,获得10
7秒前
医院的孩子完成签到,获得积分10
7秒前
年轻海云发布了新的文献求助10
7秒前
无极微光应助震动的友琴采纳,获得20
8秒前
8秒前
哈哈发布了新的文献求助10
9秒前
9秒前
无限鸵鸟发布了新的文献求助10
9秒前
苹果不去想橘子的问题完成签到,获得积分10
10秒前
10秒前
大方从阳完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
12秒前
向阳发布了新的文献求助10
12秒前
有魅力冰兰完成签到,获得积分20
12秒前
大方从阳发布了新的文献求助10
13秒前
辅助但上分完成签到,获得积分10
14秒前
张巨锋发布了新的文献求助10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233