Deep Learning‐Based Segmentation and Risk Stratification for Gastrointestinal Stromal Tumors in Transabdominal Ultrasound Imaging

主旨 人工智能 医学 分割 接收机工作特性 试验装置 精确性和召回率 模式识别(心理学) 曲线下面积 深度学习 放射科 计算机科学 内科学 间质细胞 药代动力学
作者
Minling Zhuo,Xing Chen,Jingjing Guo,Qingfu Qian,Ensheng Xue,Zhikui Chen
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
卷期号:43 (9): 1661-1672 被引量:1
标识
DOI:10.1002/jum.16489
摘要

Purpose To develop a deep neural network system for the automatic segmentation and risk stratification prediction of gastrointestinal stromal tumors (GISTs). Methods A total of 980 ultrasound (US) images from 245 GIST patients were retrospectively collected. These images were randomly divided (6:2:2) into a training set, a validation set, and an internal test set. Additionally, 188 US images from 47 prospective GIST patients were collected to evaluate the segmentation and diagnostic performance of the model. Five deep learning‐based segmentation networks, namely, UNet, FCN, DeepLabV3+, Swin Transformer, and SegNeXt, were employed, along with the ResNet 18 classification network, to select the most suitable network combination. The performance of the segmentation models was evaluated using metrics such as the intersection over union (IoU), Dice similarity coefficient (DSC), recall, and precision. The classification performance was assessed based on accuracy and the area under the receiver operating characteristic curve (AUROC). Results Among the compared models, SegNeXt‐ResNet18 exhibited the best segmentation and classification performance. On the internal test set, the proposed model achieved IoU, DSC, precision, and recall values of 82.1, 90.2, 91.7, and 88.8%, respectively. The accuracy and AUC for GIST risk prediction were 87.4 and 92.0%, respectively. On the external test set, the segmentation models exhibited IoU, DSC, precision, and recall values of 81.0, 89.5, 92.8, and 86.4%, respectively. The accuracy and AUC for GIST risk prediction were 86.7 and 92.5%, respectively. Conclusion This two‐stage SegNeXt‐ResNet18 model achieves automatic segmentation and risk stratification prediction for GISTs and demonstrates excellent segmentation and classification performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ziyue发布了新的文献求助10
1秒前
1秒前
梦见鲸鱼岛完成签到,获得积分10
1秒前
王凯发布了新的文献求助10
1秒前
lucky发布了新的文献求助10
2秒前
Boston完成签到,获得积分10
3秒前
4秒前
ayaka发布了新的文献求助10
4秒前
星期天不上发条完成签到 ,获得积分10
5秒前
WuCola完成签到 ,获得积分10
5秒前
wangzx完成签到,获得积分10
6秒前
6秒前
AishuangQi完成签到,获得积分10
6秒前
6秒前
雨田完成签到,获得积分10
6秒前
茉莉完成签到 ,获得积分10
8秒前
AAAA发布了新的文献求助10
10秒前
10秒前
11秒前
yueyeu567发布了新的文献求助10
12秒前
WangQ完成签到,获得积分10
12秒前
充电宝应助雨田采纳,获得10
12秒前
Eva完成签到,获得积分10
13秒前
14秒前
lxr发布了新的文献求助10
14秒前
江江云完成签到,获得积分20
15秒前
18秒前
18秒前
19秒前
19秒前
小高发布了新的文献求助10
19秒前
bkagyin应助AAAA采纳,获得10
20秒前
棖0921发布了新的文献求助30
20秒前
22秒前
rainbow发布了新的文献求助20
23秒前
球球爱科研完成签到,获得积分10
23秒前
23秒前
司妧完成签到,获得积分10
24秒前
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604240
求助须知:如何正确求助?哪些是违规求助? 4689005
关于积分的说明 14857491
捐赠科研通 4697182
什么是DOI,文献DOI怎么找? 2541216
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471867