Deep Learning‐Based Segmentation and Risk Stratification for Gastrointestinal Stromal Tumors in Transabdominal Ultrasound Imaging

主旨 人工智能 医学 分割 接收机工作特性 试验装置 精确性和召回率 模式识别(心理学) 曲线下面积 深度学习 放射科 计算机科学 内科学 间质细胞 药代动力学
作者
Minling Zhuo,Xing Chen,Jingjing Guo,Qingfu Qian,Ensheng Xue,Zhikui Chen
出处
期刊:Journal of Ultrasound in Medicine [Wiley]
卷期号:43 (9): 1661-1672 被引量:1
标识
DOI:10.1002/jum.16489
摘要

Purpose To develop a deep neural network system for the automatic segmentation and risk stratification prediction of gastrointestinal stromal tumors (GISTs). Methods A total of 980 ultrasound (US) images from 245 GIST patients were retrospectively collected. These images were randomly divided (6:2:2) into a training set, a validation set, and an internal test set. Additionally, 188 US images from 47 prospective GIST patients were collected to evaluate the segmentation and diagnostic performance of the model. Five deep learning‐based segmentation networks, namely, UNet, FCN, DeepLabV3+, Swin Transformer, and SegNeXt, were employed, along with the ResNet 18 classification network, to select the most suitable network combination. The performance of the segmentation models was evaluated using metrics such as the intersection over union (IoU), Dice similarity coefficient (DSC), recall, and precision. The classification performance was assessed based on accuracy and the area under the receiver operating characteristic curve (AUROC). Results Among the compared models, SegNeXt‐ResNet18 exhibited the best segmentation and classification performance. On the internal test set, the proposed model achieved IoU, DSC, precision, and recall values of 82.1, 90.2, 91.7, and 88.8%, respectively. The accuracy and AUC for GIST risk prediction were 87.4 and 92.0%, respectively. On the external test set, the segmentation models exhibited IoU, DSC, precision, and recall values of 81.0, 89.5, 92.8, and 86.4%, respectively. The accuracy and AUC for GIST risk prediction were 86.7 and 92.5%, respectively. Conclusion This two‐stage SegNeXt‐ResNet18 model achieves automatic segmentation and risk stratification prediction for GISTs and demonstrates excellent segmentation and classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
Ankangg完成签到,获得积分10
2秒前
啊啊啊完成签到 ,获得积分10
2秒前
aaaabc发布了新的文献求助20
2秒前
摆烂王子完成签到,获得积分10
3秒前
小离完成签到,获得积分10
3秒前
大个应助哲999采纳,获得10
4秒前
萌道发布了新的文献求助10
4秒前
4秒前
4秒前
yrea完成签到,获得积分10
4秒前
5秒前
JamesPei应助白华苍松采纳,获得10
6秒前
wangn发布了新的文献求助10
6秒前
挽歌发布了新的文献求助10
6秒前
6秒前
Zhang发布了新的文献求助10
6秒前
Owen应助jogrgr采纳,获得10
6秒前
wjw关闭了wjw文献求助
6秒前
7秒前
7秒前
7秒前
7秒前
Ava应助侦察兵采纳,获得10
8秒前
8秒前
rookie_b0发布了新的文献求助10
8秒前
邓代容完成签到 ,获得积分10
9秒前
可爱的函函应助南逸然采纳,获得10
9秒前
HiK完成签到,获得积分10
9秒前
gaos发布了新的文献求助10
9秒前
10秒前
外向从灵发布了新的文献求助10
10秒前
10秒前
萌道完成签到,获得积分20
11秒前
thanhmanhp完成签到,获得积分10
11秒前
doudou发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759