Multistep Forecasting Method for Offshore Wind Turbine Power Based on Multi-Timescale Input and Improved Transformer

海上风力发电 涡轮机 海洋工程 风力发电 变压器 海底管道 环境科学 风电预测 气象学 计算机科学 功率(物理) 工程类 电气工程 航空航天工程 电力系统 物理 岩土工程 电压 热力学
作者
Anping Wan,Zhipeng Gong,Chao Wei,Khalil Al‐Bukhaiti,Yunsong Ji,Shidong Ma,Fengchao Yao
出处
期刊:Journal of Marine Science and Engineering [Multidisciplinary Digital Publishing Institute]
卷期号:12 (6): 925-925
标识
DOI:10.3390/jmse12060925
摘要

Wind energy is highly volatile, and large-scale wind power grid integration significantly impacts grid stability. Accurate forecasting of wind turbine power can improve wind power consumption and ensure the economy of the power grid. This paper proposes a multistep forecasting method for offshore wind turbine power based on a multi-timescale input and an improved transformer. First, the wind speed sequence is decomposed by the VMD method to extract adequate timing information and remove the noise, after which the decomposition signals are merged with the rest of the timing features, and the dataset is split according to different timescales. A GRU receives the short-timescale inputs, and the Improved Transformer captures the timing relationship of the long-timescale inputs. Finally, a CNN is used to extract the information of each time point at the output of each branch, and the fully connected layer outputs multistep forecasting results. Experiments were conducted on operation data from four wind turbines located within the offshore wind farm but not near the edge. The results show that the proposed method achieved average errors of 0.0522 in MAE, 0.0084 in MSE, and 0.0907 in RMSE on a four-step forecast. This outperformed comparison methods LSTM, CNN-LSTM, LSTM-Attention, and Informer. The proposed method demonstrates superior forecasting performance and accuracy for multistep offshore wind turbine power forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
万能图书馆应助寄AAA采纳,获得10
1秒前
量子星尘发布了新的文献求助150
1秒前
肖战战完成签到 ,获得积分10
1秒前
大内泌探009完成签到,获得积分10
1秒前
4秒前
浮游应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
CodeCraft应助科研通管家采纳,获得20
5秒前
Akim应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
YWang应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
唔卡玛卡巴卡完成签到,获得积分20
7秒前
eric888应助英俊汽车采纳,获得100
8秒前
8秒前
Bob完成签到,获得积分10
8秒前
修越完成签到 ,获得积分10
8秒前
斯文败类应助kesler采纳,获得10
9秒前
9秒前
CodeCraft应助diedka采纳,获得10
9秒前
cardiology完成签到,获得积分10
9秒前
9秒前
科研通AI6应助科研采纳,获得10
9秒前
anyone发布了新的文献求助10
10秒前
Geng发布了新的文献求助10
10秒前
10秒前
华仔应助甜甜采纳,获得10
13秒前
怪怪发布了新的文献求助10
13秒前
15秒前
汉堡包应助旭日东升采纳,获得30
17秒前
17秒前
研友_LBR9gL完成签到 ,获得积分10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069472
求助须知:如何正确求助?哪些是违规求助? 4290805
关于积分的说明 13368855
捐赠科研通 4111012
什么是DOI,文献DOI怎么找? 2251169
邀请新用户注册赠送积分活动 1256420
关于科研通互助平台的介绍 1188901