已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A contemporary multi-objective feature selection model for depression detection using a hybrid pBGSK optimization algorithm

特征选择 选择(遗传算法) 特征(语言学) 计算机科学 优化算法 萧条(经济学) 算法 人工智能 机器学习 模式识别(心理学) 数学优化 数学 语言学 哲学 宏观经济学 经济
作者
Santhosam Kavi Priya,K. Karthika
出处
期刊:International Journal of Applied Mathematics and Computer Science [De Gruyter Open]
卷期号:33 (1) 被引量:3
标识
DOI:10.34768/amcs-2023-0010
摘要

Depression is one of the primary causes of global mental illnesses and an underlying reason for suicide. The user generated text content available in social media forums offers an opportunity to build automatic and reliable depression detection models. The core objective of this work is to select an optimal set of features that may help in classifying depressive contents posted on social media. To this end, a novel multi-objective feature selection technique (EFS-pBGSK) and machine learning algorithms are employed to train the proposed model. The novel feature selection technique incorporates a binary gaining-sharing knowledge-based optimization algorithm with population reduction (pBGSK) to obtain the optimized features from the original feature space. The extensive feature selector (EFS) is used to filter out the excessive features based on their ranking. Two text depression datasets collected from Twitter and Reddit forums are used for the evaluation of the proposed feature selection model. The experimentation is carried out using naive Bayes (NB) and support vector machine (SVM) classifiers for five different feature subset sizes (10, 50, 100, 300 and 500). The experimental outcome indicates that the proposed model can achieve superior performance scores. The top results are obtained using the SVM classifier for the SDD dataset with 0.962 accuracy, 0.929 F1 score, 0.0809 log-loss and 0.0717 mean absolute error (MAE). As a result, the optimal combination of features selected by the proposed hybrid model significantly improves the performance of the depression detection system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
1秒前
哈哈哈哈完成签到,获得积分10
1秒前
阿信必发JACS完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
NEO完成签到 ,获得积分10
5秒前
yx_cheng应助科研通管家采纳,获得100
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
无花果应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
远志完成签到 ,获得积分10
7秒前
lianmeiliu发布了新的文献求助10
9秒前
cossen完成签到,获得积分10
10秒前
耍酷诗槐应助123采纳,获得10
11秒前
yuntong完成签到 ,获得积分0
12秒前
123完成签到,获得积分10
16秒前
17秒前
脑洞疼应助丘山采纳,获得10
19秒前
jiafang完成签到,获得积分10
19秒前
开放空间发布了新的文献求助10
24秒前
junkook完成签到 ,获得积分10
25秒前
26秒前
研友_LNM558完成签到,获得积分20
26秒前
Bizibili完成签到,获得积分10
28秒前
28秒前
28秒前
HTniconico完成签到 ,获得积分10
29秒前
研友_LNM558发布了新的文献求助10
29秒前
30秒前
31秒前
31秒前
丘山完成签到,获得积分10
32秒前
34秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994701
求助须知:如何正确求助?哪些是违规求助? 3534936
关于积分的说明 11266877
捐赠科研通 3274773
什么是DOI,文献DOI怎么找? 1806467
邀请新用户注册赠送积分活动 883316
科研通“疑难数据库(出版商)”最低求助积分说明 809749