A contemporary multi-objective feature selection model for depression detection using a hybrid pBGSK optimization algorithm

特征选择 选择(遗传算法) 特征(语言学) 计算机科学 优化算法 萧条(经济学) 算法 人工智能 机器学习 模式识别(心理学) 数学优化 数学 哲学 语言学 经济 宏观经济学
作者
Santhosam Kavi Priya,K. Karthika
出处
期刊:International Journal of Applied Mathematics and Computer Science [De Gruyter]
卷期号:33 (1) 被引量:3
标识
DOI:10.34768/amcs-2023-0010
摘要

Depression is one of the primary causes of global mental illnesses and an underlying reason for suicide. The user generated text content available in social media forums offers an opportunity to build automatic and reliable depression detection models. The core objective of this work is to select an optimal set of features that may help in classifying depressive contents posted on social media. To this end, a novel multi-objective feature selection technique (EFS-pBGSK) and machine learning algorithms are employed to train the proposed model. The novel feature selection technique incorporates a binary gaining-sharing knowledge-based optimization algorithm with population reduction (pBGSK) to obtain the optimized features from the original feature space. The extensive feature selector (EFS) is used to filter out the excessive features based on their ranking. Two text depression datasets collected from Twitter and Reddit forums are used for the evaluation of the proposed feature selection model. The experimentation is carried out using naive Bayes (NB) and support vector machine (SVM) classifiers for five different feature subset sizes (10, 50, 100, 300 and 500). The experimental outcome indicates that the proposed model can achieve superior performance scores. The top results are obtained using the SVM classifier for the SDD dataset with 0.962 accuracy, 0.929 F1 score, 0.0809 log-loss and 0.0717 mean absolute error (MAE). As a result, the optimal combination of features selected by the proposed hybrid model significantly improves the performance of the depression detection system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李_Steven发布了新的文献求助10
刚刚
SciGPT应助www采纳,获得10
刚刚
vv发布了新的文献求助10
刚刚
刚刚
1111发布了新的文献求助10
1秒前
family发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
啊姚爱学习完成签到,获得积分10
2秒前
Lucas应助心在鹿上采纳,获得10
2秒前
李爱国应助chaochaozi采纳,获得10
2秒前
lab发布了新的文献求助10
3秒前
至幸发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
星辰大海应助sxy采纳,获得10
4秒前
张张发布了新的文献求助10
4秒前
科研人科研魂完成签到,获得积分10
4秒前
ljj722发布了新的文献求助10
5秒前
5秒前
科研通AI6应助Eliauk采纳,获得10
5秒前
5秒前
xuan发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
领导范儿应助冰淇淋采纳,获得20
8秒前
楚天正阔发布了新的文献求助10
8秒前
8秒前
小九九完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
Joy发布了新的文献求助10
9秒前
轻松的又晴完成签到,获得积分10
9秒前
fafafa发布了新的文献求助10
9秒前
超能力完成签到,获得积分10
9秒前
laber完成签到,获得积分0
10秒前
小豹子完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653747
求助须知:如何正确求助?哪些是违规求助? 4790572
关于积分的说明 15066040
捐赠科研通 4812391
什么是DOI,文献DOI怎么找? 2574512
邀请新用户注册赠送积分活动 1530011
关于科研通互助平台的介绍 1488724