A contemporary multi-objective feature selection model for depression detection using a hybrid pBGSK optimization algorithm

特征选择 选择(遗传算法) 特征(语言学) 计算机科学 优化算法 萧条(经济学) 算法 人工智能 机器学习 模式识别(心理学) 数学优化 数学 哲学 语言学 经济 宏观经济学
作者
Santhosam Kavi Priya,K. Karthika
出处
期刊:International Journal of Applied Mathematics and Computer Science [De Gruyter]
卷期号:33 (1) 被引量:3
标识
DOI:10.34768/amcs-2023-0010
摘要

Depression is one of the primary causes of global mental illnesses and an underlying reason for suicide. The user generated text content available in social media forums offers an opportunity to build automatic and reliable depression detection models. The core objective of this work is to select an optimal set of features that may help in classifying depressive contents posted on social media. To this end, a novel multi-objective feature selection technique (EFS-pBGSK) and machine learning algorithms are employed to train the proposed model. The novel feature selection technique incorporates a binary gaining-sharing knowledge-based optimization algorithm with population reduction (pBGSK) to obtain the optimized features from the original feature space. The extensive feature selector (EFS) is used to filter out the excessive features based on their ranking. Two text depression datasets collected from Twitter and Reddit forums are used for the evaluation of the proposed feature selection model. The experimentation is carried out using naive Bayes (NB) and support vector machine (SVM) classifiers for five different feature subset sizes (10, 50, 100, 300 and 500). The experimental outcome indicates that the proposed model can achieve superior performance scores. The top results are obtained using the SVM classifier for the SDD dataset with 0.962 accuracy, 0.929 F1 score, 0.0809 log-loss and 0.0717 mean absolute error (MAE). As a result, the optimal combination of features selected by the proposed hybrid model significantly improves the performance of the depression detection system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助hu采纳,获得10
1秒前
刘轩雨完成签到,获得积分10
1秒前
文艺的慕青应助xyy102采纳,获得10
1秒前
wanci应助tangshijun采纳,获得10
1秒前
1秒前
2秒前
winwin发布了新的文献求助10
2秒前
2秒前
汉堡包应助shell采纳,获得30
3秒前
3秒前
赵婧完成签到,获得积分10
3秒前
bkagyin应助xx采纳,获得10
3秒前
科研通AI6应助无风风采纳,获得10
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
Qyyy发布了新的文献求助10
4秒前
yyl发布了新的文献求助10
5秒前
桐桐应助HH采纳,获得10
5秒前
科研通AI6应助受伤易巧采纳,获得10
5秒前
慕青应助受伤易巧采纳,获得10
5秒前
核桃发布了新的文献求助10
5秒前
今后应助蛋卷采纳,获得10
5秒前
乐观无心完成签到,获得积分10
5秒前
Thi发布了新的文献求助10
6秒前
oxear完成签到,获得积分10
7秒前
7秒前
小马甲应助哦哟哟丶采纳,获得10
7秒前
柯米克发布了新的文献求助10
7秒前
刘轩雨发布了新的文献求助10
7秒前
8秒前
8秒前
暖暖发布了新的文献求助10
9秒前
9秒前
9秒前
年轻的问兰完成签到,获得积分10
9秒前
斯文败类应助搞怪的萃采纳,获得10
9秒前
无私的黄豆完成签到 ,获得积分10
10秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581731
求助须知:如何正确求助?哪些是违规求助? 4665950
关于积分的说明 14759751
捐赠科研通 4607883
什么是DOI,文献DOI怎么找? 2528410
邀请新用户注册赠送积分活动 1497684
关于科研通互助平台的介绍 1466564