A contemporary multi-objective feature selection model for depression detection using a hybrid pBGSK optimization algorithm

特征选择 选择(遗传算法) 特征(语言学) 计算机科学 优化算法 萧条(经济学) 算法 人工智能 机器学习 模式识别(心理学) 数学优化 数学 哲学 语言学 经济 宏观经济学
作者
Santhosam Kavi Priya,K. Karthika
出处
期刊:International Journal of Applied Mathematics and Computer Science [De Gruyter]
卷期号:33 (1) 被引量:3
标识
DOI:10.34768/amcs-2023-0010
摘要

Depression is one of the primary causes of global mental illnesses and an underlying reason for suicide. The user generated text content available in social media forums offers an opportunity to build automatic and reliable depression detection models. The core objective of this work is to select an optimal set of features that may help in classifying depressive contents posted on social media. To this end, a novel multi-objective feature selection technique (EFS-pBGSK) and machine learning algorithms are employed to train the proposed model. The novel feature selection technique incorporates a binary gaining-sharing knowledge-based optimization algorithm with population reduction (pBGSK) to obtain the optimized features from the original feature space. The extensive feature selector (EFS) is used to filter out the excessive features based on their ranking. Two text depression datasets collected from Twitter and Reddit forums are used for the evaluation of the proposed feature selection model. The experimentation is carried out using naive Bayes (NB) and support vector machine (SVM) classifiers for five different feature subset sizes (10, 50, 100, 300 and 500). The experimental outcome indicates that the proposed model can achieve superior performance scores. The top results are obtained using the SVM classifier for the SDD dataset with 0.962 accuracy, 0.929 F1 score, 0.0809 log-loss and 0.0717 mean absolute error (MAE). As a result, the optimal combination of features selected by the proposed hybrid model significantly improves the performance of the depression detection system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mi1486325完成签到,获得积分10
刚刚
赘婿应助顺利大门采纳,获得10
刚刚
yh发布了新的文献求助10
1秒前
1秒前
尊敬曼岚发布了新的文献求助10
2秒前
Nic发布了新的文献求助10
4秒前
4秒前
淋雨的猪发布了新的文献求助10
5秒前
5秒前
HHN发布了新的文献求助10
6秒前
Mrking发布了新的文献求助10
6秒前
善学以致用应助Dongfu_FA采纳,获得10
6秒前
7秒前
汉堡包应助二东采纳,获得10
8秒前
研友_VZG7GZ应助王妍采纳,获得10
8秒前
9秒前
wanci应助淋雨的猪采纳,获得10
9秒前
科目三应助yh采纳,获得10
10秒前
哇嘞发布了新的文献求助10
11秒前
伟大的鲁路皇完成签到,获得积分10
11秒前
光亮夏槐发布了新的文献求助10
12秒前
13秒前
自然篮球完成签到,获得积分20
13秒前
星河圈揽完成签到,获得积分10
14秒前
认真的小海豚完成签到 ,获得积分10
15秒前
小神仙完成签到,获得积分10
15秒前
丘比特应助Gao_Z_X采纳,获得10
15秒前
孔雀吃披萨完成签到,获得积分10
16秒前
16秒前
田様应助grind采纳,获得10
16秒前
ghy发布了新的文献求助10
17秒前
17秒前
顾矜应助henzhidequxian采纳,获得10
18秒前
Jin完成签到 ,获得积分10
18秒前
18秒前
20秒前
夕夕口口完成签到,获得积分10
21秒前
真不想吃辣完成签到,获得积分10
22秒前
lee关闭了lee文献求助
23秒前
24秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076804
求助须知:如何正确求助?哪些是违规求助? 2729802
关于积分的说明 7510010
捐赠科研通 2378023
什么是DOI,文献DOI怎么找? 1260989
科研通“疑难数据库(出版商)”最低求助积分说明 611204
版权声明 597203