A Blockchain-Empowered Federated Learning-based Framework for Data Privacy in Lung Disease Detection System

块链 计算机科学 数据共享 原始数据 人工智能 计算机安全 机器学习 数据科学 数据挖掘 医学 替代医学 病理 程序设计语言
作者
Mansi Gupta,Mohit Kumar,Yash Gupta
出处
期刊:Computers in Human Behavior [Elsevier]
卷期号:158: 108302-108302
标识
DOI:10.1016/j.chb.2024.108302
摘要

Lung diseases are one of the prime reasons for mortality globally, having an estimated five million per year fatal cases worldwide. This is a growing global concern so early detection using a Computed Tomography (CT) scan is crucial to prevent loss that grabs the attention of cutting-edge technologies to bring the concept called "Smart Healthcare". However, the paucity and heterogeneity of medical data across the globe make it challenging to develop a global classification framework, while the other concerns that arise from legal and privacy leakage become an obstacle for data sharing as single source data is hardly enough to represent universal. Federated Learning has issued a solution to licensing research and data heterogeneity concerns allowing collaborative and on-device learning without sharing raw data. FL faces security issues such as Denial-of-service, Reverse engineering attacks, etc, where it is impossible to track the data and store it securely. The study proposes an innovative framework that combines Blockchain technology and Federated Learning (FL) to enable collaborative model training while preserving data privacy. Through this approach, patient data is authenticated using blockchain, and FL facilitates on-device learning without sharing raw data. The framework utilizes the DenseNet-201 model for lung disease classification, with model parameter aggregation using the FedAvg algorithm and storage on the blockchain via IPFS. Finally, we have conducted a substantial investigation with Python and its widely used libraries, like TensorFlow and Scikit-Learn to demonstrate that the algorithm accurately detects lung diseases and attained an accuracy, precision, recall, and F1-score of 90%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
宓函发布了新的文献求助10
3秒前
4秒前
5秒前
不想起完成签到,获得积分10
7秒前
ESLG完成签到 ,获得积分10
7秒前
lingdu完成签到,获得积分20
9秒前
10秒前
科研通AI2S应助宓函采纳,获得10
12秒前
寒冷鹏煊发布了新的文献求助10
13秒前
麦麦脆汁狗完成签到,获得积分20
13秒前
Kristin应助引商刻羽采纳,获得10
13秒前
14秒前
九三完成签到,获得积分10
15秒前
16秒前
fifteen发布了新的文献求助10
19秒前
bulubulubulubule完成签到,获得积分10
20秒前
清浅发布了新的文献求助10
21秒前
icaohao完成签到,获得积分10
21秒前
英姑应助保护野菠萝采纳,获得10
22秒前
Yxian完成签到,获得积分10
26秒前
27秒前
顽皮孙完成签到,获得积分20
28秒前
未来的闫院士完成签到 ,获得积分10
29秒前
29秒前
粥粥完成签到,获得积分10
30秒前
30秒前
山上完成签到 ,获得积分10
31秒前
mei完成签到,获得积分10
31秒前
CC发布了新的文献求助10
31秒前
自由的刺猬完成签到,获得积分10
32秒前
宋祝福完成签到 ,获得积分10
32秒前
32秒前
甜丝丝完成签到 ,获得积分10
33秒前
去去去去完成签到,获得积分10
33秒前
33秒前
puziju完成签到,获得积分10
33秒前
mei发布了新的文献求助10
34秒前
一一完成签到 ,获得积分10
35秒前
35秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3163383
求助须知:如何正确求助?哪些是违规求助? 2814219
关于积分的说明 7903906
捐赠科研通 2473789
什么是DOI,文献DOI怎么找? 1317077
科研通“疑难数据库(出版商)”最低求助积分说明 631615
版权声明 602187