A Blockchain-Empowered Federated Learning-based Framework for Data Privacy in Lung Disease Detection System

块链 计算机科学 数据共享 原始数据 人工智能 计算机安全 机器学习 数据科学 数据挖掘 医学 病理 程序设计语言 替代医学
作者
Mansi Gupta,Mohit Kumar,Yash Gupta
出处
期刊:Computers in Human Behavior [Elsevier]
卷期号:158: 108302-108302
标识
DOI:10.1016/j.chb.2024.108302
摘要

Lung diseases are one of the prime reasons for mortality globally, having an estimated five million per year fatal cases worldwide. This is a growing global concern so early detection using a Computed Tomography (CT) scan is crucial to prevent loss that grabs the attention of cutting-edge technologies to bring the concept called "Smart Healthcare". However, the paucity and heterogeneity of medical data across the globe make it challenging to develop a global classification framework, while the other concerns that arise from legal and privacy leakage become an obstacle for data sharing as single source data is hardly enough to represent universal. Federated Learning has issued a solution to licensing research and data heterogeneity concerns allowing collaborative and on-device learning without sharing raw data. FL faces security issues such as Denial-of-service, Reverse engineering attacks, etc, where it is impossible to track the data and store it securely. The study proposes an innovative framework that combines Blockchain technology and Federated Learning (FL) to enable collaborative model training while preserving data privacy. Through this approach, patient data is authenticated using blockchain, and FL facilitates on-device learning without sharing raw data. The framework utilizes the DenseNet-201 model for lung disease classification, with model parameter aggregation using the FedAvg algorithm and storage on the blockchain via IPFS. Finally, we have conducted a substantial investigation with Python and its widely used libraries, like TensorFlow and Scikit-Learn to demonstrate that the algorithm accurately detects lung diseases and attained an accuracy, precision, recall, and F1-score of 90%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助wjx采纳,获得10
刚刚
在水一方应助wjx采纳,获得10
1秒前
科研通AI2S应助wjx采纳,获得10
1秒前
氮三氟甲基应助wjx采纳,获得10
1秒前
FashionBoy应助wjx采纳,获得30
1秒前
天天快乐应助wjx采纳,获得10
1秒前
ding应助一一采纳,获得10
2秒前
weishen完成签到,获得积分0
2秒前
2秒前
福尔摩曦完成签到,获得积分10
3秒前
3秒前
Feng发布了新的文献求助10
3秒前
聪明可爱小绘理应助高磊采纳,获得10
4秒前
wt完成签到,获得积分10
5秒前
444关闭了444文献求助
6秒前
ZYQ完成签到 ,获得积分10
6秒前
苏苏完成签到,获得积分10
7秒前
7秒前
7秒前
高大黄蜂完成签到,获得积分10
8秒前
新青年应助gmc采纳,获得10
8秒前
勤劳落雁发布了新的文献求助10
8秒前
超帅的从菡完成签到 ,获得积分10
8秒前
leena发布了新的文献求助10
8秒前
斯文败类应助Hh采纳,获得10
9秒前
高大黄蜂发布了新的文献求助10
10秒前
英姑应助guygun采纳,获得10
10秒前
Feng完成签到,获得积分10
11秒前
12秒前
花花完成签到,获得积分10
12秒前
一言矣完成签到 ,获得积分10
13秒前
海绵宝宝完成签到,获得积分10
14秒前
贪吃的猴子完成签到,获得积分10
14秒前
long完成签到 ,获得积分10
15秒前
研友_LOqqmZ发布了新的文献求助10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
kilig应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824