Enhancing Urban Land Use Identification Using Urban Morphology

城市形态 鉴定(生物学) 形态学(生物学) 土地利用 地理 环境规划 环境资源管理 城市规划 环境科学 生态学 地质学 生物 古生物学
作者
Chuan Lin,Guang Li,Zegen Zhou,Jia Li,Hongmei Wang,Yilun Liu
出处
期刊:Land [MDPI AG]
卷期号:13 (6): 761-761 被引量:2
标识
DOI:10.3390/land13060761
摘要

Urban land use provides essential information about how land is utilized within cities, which is critical for land planning, urban renewal, and early warnings for natural disasters. Although existing studies have utilized multi-source perception data to acquire land use information quickly and at low cost, and some have integrated urban morphological indicators to aid in land use identification, there is still a lack of systematic discussion in the literature regarding the potential of three-dimensional urban morphology to enhance identification effectiveness. Therefore, this paper aims to explore how urban three-dimensional morphology can be used to improve the identification of urban land use types. This study presents an innovative approach called the UMH–LUC model to enhance the accuracy of urban land use identification. The model first conducts a preliminary classification using points of interest (POI) data. It then improves the results with a dynamic reclassification based on floor area ratio (FAR) measurements and a variance reclassification using area and perimeter metrics. These methodologies leverage key urban morphological features to distinguish land use types more precisely. The model was validated in the Pearl River Delta urban agglomeration using random sampling, comparative analysis and case studies. Results demonstrate that the UMH–LUC model achieved an identification accuracy of 81.7% and a Kappa coefficient of 77.6%, representing an 11.9% improvement over a non-morphology-based approach. Moreover, the overall disagreement for UMH–LUC is 0.183, a reduction of 0.099 compared to LUC without urban morphology and 0.19 compared to EULUC-China. The model performed particularly well in identifying residential land, mixed-use areas and marginal lands. This confirms urban morphology’s value in supporting low-cost, efficient land use mapping with applications for sustainable planning and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
尺素寸心完成签到,获得积分10
1秒前
2秒前
老实不尤完成签到,获得积分10
3秒前
CCL应助mammoth采纳,获得40
4秒前
5秒前
5秒前
6秒前
7秒前
盘尼西林给盘尼西林的求助进行了留言
7秒前
7秒前
香蕉觅云应助XXF采纳,获得10
7秒前
8秒前
大个应助招财不肥采纳,获得10
8秒前
xx发布了新的文献求助10
9秒前
joanna0932完成签到,获得积分10
9秒前
坚定亦竹完成签到,获得积分10
10秒前
mia完成签到,获得积分20
10秒前
10秒前
10秒前
CodeCraft应助zxx5012采纳,获得10
10秒前
12秒前
paparazzi221发布了新的文献求助10
12秒前
笑点低的大有完成签到 ,获得积分10
13秒前
孔小白发布了新的文献求助10
14秒前
14秒前
stephanie96发布了新的文献求助10
14秒前
Millie发布了新的文献求助10
15秒前
duxinyue应助sunzhiyu233采纳,获得10
15秒前
16秒前
喜悦夏之发布了新的文献求助10
17秒前
Chloe完成签到,获得积分10
17秒前
Kite完成签到,获得积分10
17秒前
JamesPei应助ZH的天方夜谭采纳,获得10
17秒前
晓峰完成签到,获得积分10
18秒前
xiao完成签到 ,获得积分10
18秒前
18秒前
20秒前
Ayu完成签到,获得积分10
20秒前
yale发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808