Snoring Sound Recognition Using Multi-Channel Spectrograms

光谱图 计算机科学 声音(地理) 语音识别 频道(广播) 声学 电信 物理
作者
Ziqiang Ye,Jianxin Peng,Xiaowen Zhang,Lijuan Song
出处
期刊:Archives of Acoustics [De Gruyter]
卷期号:: 169-178 被引量:3
标识
DOI:10.24425/aoa.2024.148775
摘要

Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a common and high-risk sleep-related breathing disorder. Snoring detection is a simple and non-invasive method. In many studies, the feature maps are obtained by applying a short-time Fourier transform (STFT) and feeding the model with single-channel input tensors. However, this approach may limit the potential of convolutional networks to learn diverse representations of snore signals. This paper proposes a snoring sound detection algorithm using a multi-channel spectrogram and convolutional neural network (CNN). The sleep recordings from 30 subjects at the hospital were collected, and four different feature maps were extracted from them as model input, including spectrogram, Mel-spectrogram, continuous wavelet transform (CWT), and multi-channel spectrogram composed of the three single-channel maps. Three methods of data set partitioning are used to evaluate the performance of feature maps. The proposed feature maps were compared through the training set and test set of independent subjects by using a CNN model. The results show that the accuracy of the multi-channel spectrogram reaches 94.18%, surpassing that of the Mel-spectrogram that exhibits the best performance among the single-channel spectrograms. This study optimizes the system in the feature extraction stage to adapt to the superior feature learning capability of the deep learning model, providing a more effective feature map for snoring detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
使命完成签到 ,获得积分10
刚刚
aqaqaqa完成签到,获得积分10
2秒前
2秒前
5秒前
非同小可发布了新的文献求助10
8秒前
敏感迎丝完成签到 ,获得积分10
9秒前
123完成签到,获得积分20
9秒前
大模型应助博修采纳,获得10
11秒前
13秒前
Singularity应助123采纳,获得10
14秒前
FashionBoy应助F君采纳,获得10
15秒前
15秒前
15秒前
辉辉发布了新的文献求助10
18秒前
19秒前
as发布了新的文献求助10
20秒前
万能图书馆应助辉辉采纳,获得10
21秒前
小凉完成签到 ,获得积分10
22秒前
22秒前
吱哦周完成签到,获得积分20
23秒前
yin完成签到 ,获得积分10
26秒前
26秒前
桐桐应助liuzr采纳,获得10
27秒前
非同小可完成签到,获得积分10
30秒前
小秦秦完成签到 ,获得积分10
31秒前
sue发布了新的文献求助10
31秒前
zhaoxi完成签到 ,获得积分10
32秒前
32秒前
33秒前
38秒前
AAAstf完成签到 ,获得积分10
38秒前
小白发布了新的文献求助10
38秒前
博修发布了新的文献求助10
39秒前
40秒前
海风完成签到,获得积分10
40秒前
乐乐应助陌路采纳,获得10
40秒前
41秒前
42秒前
43秒前
43秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262667
求助须知:如何正确求助?哪些是违规求助? 2903265
关于积分的说明 8324749
捐赠科研通 2573377
什么是DOI,文献DOI怎么找? 1398211
科研通“疑难数据库(出版商)”最低求助积分说明 654024
邀请新用户注册赠送积分活动 632642