Snoring Sound Recognition Using Multi-Channel Spectrograms

光谱图 计算机科学 声音(地理) 语音识别 频道(广播) 声学 电信 物理
作者
Ziqiang Ye,Jianxin Peng,Xiaowen Zhang,Lijuan Song
出处
期刊:Archives of Acoustics [De Gruyter]
卷期号:: 169-178 被引量:3
标识
DOI:10.24425/aoa.2024.148775
摘要

Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a common and high-risk sleep-related breathing disorder. Snoring detection is a simple and non-invasive method. In many studies, the feature maps are obtained by applying a short-time Fourier transform (STFT) and feeding the model with single-channel input tensors. However, this approach may limit the potential of convolutional networks to learn diverse representations of snore signals. This paper proposes a snoring sound detection algorithm using a multi-channel spectrogram and convolutional neural network (CNN). The sleep recordings from 30 subjects at the hospital were collected, and four different feature maps were extracted from them as model input, including spectrogram, Mel-spectrogram, continuous wavelet transform (CWT), and multi-channel spectrogram composed of the three single-channel maps. Three methods of data set partitioning are used to evaluate the performance of feature maps. The proposed feature maps were compared through the training set and test set of independent subjects by using a CNN model. The results show that the accuracy of the multi-channel spectrogram reaches 94.18%, surpassing that of the Mel-spectrogram that exhibits the best performance among the single-channel spectrograms. This study optimizes the system in the feature extraction stage to adapt to the superior feature learning capability of the deep learning model, providing a more effective feature map for snoring detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助serein采纳,获得10
刚刚
psclib完成签到,获得积分10
1秒前
尽低眉发布了新的文献求助10
1秒前
妙手回春板蓝根完成签到,获得积分10
1秒前
1秒前
香蕉觅云应助MXene采纳,获得10
1秒前
2秒前
2秒前
3秒前
ACaca完成签到,获得积分10
3秒前
songcf应助L123采纳,获得10
3秒前
不吃番茄发布了新的文献求助10
3秒前
3秒前
4秒前
踏实的雁易完成签到,获得积分10
5秒前
舒心如凡完成签到,获得积分10
6秒前
英俊的铭应助沉静丹寒采纳,获得10
6秒前
SciGPT应助我是楠个谁采纳,获得10
6秒前
7秒前
7秒前
麦可发布了新的文献求助10
8秒前
阿甘完成签到,获得积分10
8秒前
8秒前
8秒前
Valley发布了新的文献求助10
9秒前
9秒前
TYG发布了新的文献求助10
10秒前
土匪猫完成签到,获得积分10
11秒前
星河鹭起完成签到 ,获得积分10
11秒前
Steplan发布了新的文献求助10
11秒前
12秒前
荆芥完成签到,获得积分10
13秒前
13秒前
C14yd3n发布了新的文献求助10
13秒前
14秒前
14秒前
kk发布了新的文献求助10
14秒前
15秒前
15秒前
晴小晴发布了新的文献求助10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Skin Tissue Engineering Methods and Protocols Book May 2025 300
Avialinguistics:The Study of Language for Aviation Purposes 270
Starvation biology of Plutella xylostella from a post-harvest crop sanitation perspective 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3688425
求助须知:如何正确求助?哪些是违规求助? 3238291
关于积分的说明 9835301
捐赠科研通 2950383
什么是DOI,文献DOI怎么找? 1617908
邀请新用户注册赠送积分活动 764615
科研通“疑难数据库(出版商)”最低求助积分说明 738676