亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The development of a prediction model based on random survival forest for the prognosis of non- Hodgkin lymphoma: A prospective cohort study in China

医学 接收机工作特性 比例危险模型 内科学 队列 布里氏评分 前瞻性队列研究 Lasso(编程语言) 肿瘤科 统计 数学 计算机科学 万维网
作者
Xiaosheng Li,Zailin Yang,Jieping Li,Guixue Wang,Anlong Sun,Ying Wang,Wei Zhang,Yao Liu,Haike Lei
出处
期刊:Heliyon [Elsevier]
卷期号:10 (12): e32788-e32788
标识
DOI:10.1016/j.heliyon.2024.e32788
摘要

Background and objectiveThe pathological staging of non-Hodgkin lymphoma (NHL) is complex, the clinical manifestations are varied, and the prognosis differ considerably. To provide a useful reference for early detection and effective treatment of NHL, we developed a random survival forest (RSF) prognostic model based on machine learning (ML) algorithms using prospective cohort data collected from Chongqing Cancer Hospital from Jan 1, 2017 to Dec 31, 2019 (n = 1449) to compare with the traditional cornerstone method Cox proportional hazards (CPH) model and evaluate the predictability of the model.MethodsPatients were randomly split into a training cohort (TC) and validation cohort (VC) based on 65/35 ratio. The least absolute shrinkage and selection operator (LASSO) regression analysis was used to extracted the important features. And the RSF was modeled to explore the prognostic factors impacting the overall survival (OS) of patients with NHLs in the TC and validated in the VC. The C-index, the Integrated Brier Score (IBS), Kaplan-Meir method, the receiver operating characteristic (ROC) curve, and the area under the ROC curve (AUC) were selected to measure performances and discriminations of the models. In addition, individual survival probability predicted for NHL patients.ResultsAccording to the features extracted by LASSO model and univariable Cox model, 16 variables were selected to develop the RSF model with log-rank splitting rule, which were age, ethnicity, medical insurance, Ann Arbor stage, pathology, targeted-therapy, chemo-therapy, peripheral blood neutrophil count to lymphocyte count ratio (NLR), peripheral blood platelet count to lymphocyte count ratio (PLR), serum lactate dehydrogenase (LDH), CD4/CD8, platelet (PLT), absolute neutrophil count (ANC), lymphocyte (LYM), B-symptoms, and (CPR) were important prognostic factors. Compared to the CPH model (C-index = 0.748, IBS = 0.166), the RSF model (C-index = 0.786, IBS = 0.165) is outperformed in predictability and accuracy. The AUC of the RSF model to estimate the 1-, 3-, and 5-year OS in TC were 0.847, 0.847, and 0.809, respectively; while those in the CPH were 0.816, 0.803, and 0.750, respectively.ConclusionsTo provide practical implications for the implementation of individualized therapy, the study constructed a high-performed RSF model and reveal that it outperformed the traditional model CPH. And the RSF model ranked the risk variables. In addition, we stratified the risk of NHL patients and estimated individual survival probability based on the RSF model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
icoo完成签到,获得积分10
16秒前
28秒前
40秒前
42秒前
肖肖发布了新的文献求助10
47秒前
ceeray23发布了新的文献求助20
53秒前
57秒前
1分钟前
肖肖完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
null应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
null应助科研通管家采纳,获得10
1分钟前
1分钟前
顾矜应助爱笑的傲晴采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
科研通AI6应助lemon采纳,获得30
2分钟前
2分钟前
2分钟前
KINGAZX完成签到 ,获得积分10
3分钟前
hahha发布了新的文献求助10
3分钟前
3分钟前
圆圆901234发布了新的文献求助10
3分钟前
英俊的铭应助hahha采纳,获得10
3分钟前
3分钟前
LHL完成签到,获得积分10
3分钟前
LeslieHu发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628241
求助须知:如何正确求助?哪些是违规求助? 4716158
关于积分的说明 14963847
捐赠科研通 4785915
什么是DOI,文献DOI怎么找? 2555467
邀请新用户注册赠送积分活动 1516748
关于科研通互助平台的介绍 1477316