The development of a prediction model based on random survival forest for the prognosis of non- Hodgkin lymphoma: A prospective cohort study in China

医学 接收机工作特性 比例危险模型 内科学 队列 布里氏评分 前瞻性队列研究 Lasso(编程语言) 肿瘤科 统计 数学 计算机科学 万维网
作者
Xiaosheng Li,Zailin Yang,Jieping Li,Guixue Wang,Anlong Sun,Ying Wang,Wei Zhang,Yao Liu,Haike Lei
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (12): e32788-e32788
标识
DOI:10.1016/j.heliyon.2024.e32788
摘要

Background and objectiveThe pathological staging of non-Hodgkin lymphoma (NHL) is complex, the clinical manifestations are varied, and the prognosis differ considerably. To provide a useful reference for early detection and effective treatment of NHL, we developed a random survival forest (RSF) prognostic model based on machine learning (ML) algorithms using prospective cohort data collected from Chongqing Cancer Hospital from Jan 1, 2017 to Dec 31, 2019 (n = 1449) to compare with the traditional cornerstone method Cox proportional hazards (CPH) model and evaluate the predictability of the model.MethodsPatients were randomly split into a training cohort (TC) and validation cohort (VC) based on 65/35 ratio. The least absolute shrinkage and selection operator (LASSO) regression analysis was used to extracted the important features. And the RSF was modeled to explore the prognostic factors impacting the overall survival (OS) of patients with NHLs in the TC and validated in the VC. The C-index, the Integrated Brier Score (IBS), Kaplan-Meir method, the receiver operating characteristic (ROC) curve, and the area under the ROC curve (AUC) were selected to measure performances and discriminations of the models. In addition, individual survival probability predicted for NHL patients.ResultsAccording to the features extracted by LASSO model and univariable Cox model, 16 variables were selected to develop the RSF model with log-rank splitting rule, which were age, ethnicity, medical insurance, Ann Arbor stage, pathology, targeted-therapy, chemo-therapy, peripheral blood neutrophil count to lymphocyte count ratio (NLR), peripheral blood platelet count to lymphocyte count ratio (PLR), serum lactate dehydrogenase (LDH), CD4/CD8, platelet (PLT), absolute neutrophil count (ANC), lymphocyte (LYM), B-symptoms, and (CPR) were important prognostic factors. Compared to the CPH model (C-index = 0.748, IBS = 0.166), the RSF model (C-index = 0.786, IBS = 0.165) is outperformed in predictability and accuracy. The AUC of the RSF model to estimate the 1-, 3-, and 5-year OS in TC were 0.847, 0.847, and 0.809, respectively; while those in the CPH were 0.816, 0.803, and 0.750, respectively.ConclusionsTo provide practical implications for the implementation of individualized therapy, the study constructed a high-performed RSF model and reveal that it outperformed the traditional model CPH. And the RSF model ranked the risk variables. In addition, we stratified the risk of NHL patients and estimated individual survival probability based on the RSF model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
程昌浩发布了新的文献求助10
1秒前
1秒前
1秒前
清秀秀发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
万能图书馆应助xing采纳,获得10
4秒前
4秒前
19205100313发布了新的文献求助10
6秒前
DamenS发布了新的文献求助10
6秒前
小杜发布了新的文献求助10
6秒前
璐瑶发布了新的文献求助10
6秒前
故酒发布了新的文献求助100
7秒前
可耐的世倌完成签到 ,获得积分10
8秒前
8秒前
9秒前
俭朴外绣发布了新的文献求助10
9秒前
汉堡包应助LYH采纳,获得10
10秒前
10秒前
10秒前
sunny33发布了新的文献求助10
10秒前
旺旺碎冰冰完成签到,获得积分10
10秒前
星辰大海应助廖翰彬采纳,获得10
11秒前
12应助歪比巴卜采纳,获得20
11秒前
13秒前
13秒前
程昌浩完成签到,获得积分10
13秒前
酒宜微醉发布了新的文献求助20
13秒前
edtaa发布了新的文献求助10
13秒前
灯没点完成签到,获得积分10
14秒前
Joker完成签到,获得积分10
14秒前
15秒前
袁大头发布了新的文献求助10
16秒前
17秒前
科研通AI6应助璐瑶采纳,获得10
18秒前
DamenS发布了新的文献求助10
19秒前
20秒前
20秒前
顺利毕业完成签到,获得积分10
22秒前
大个应助WAN采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908385
求助须知:如何正确求助?哪些是违规求助? 4185042
关于积分的说明 12996504
捐赠科研通 3951722
什么是DOI,文献DOI怎么找? 2167149
邀请新用户注册赠送积分活动 1185586
关于科研通互助平台的介绍 1092179