污染物
絮凝作用
机制(生物学)
化学
环境化学
废物管理
环境科学
环境工程
工程类
有机化学
物理
量子力学
作者
Chenxu Wang,Kangying Guo,Beibei Liu,Yue Gao,Qinyan Yue,Haijiao Xie,Baoyu Gao
出处
期刊:Water Research
[Elsevier]
日期:2024-06-19
卷期号:260: 121966-121966
被引量:1
标识
DOI:10.1016/j.watres.2024.121966
摘要
The efficient removal of antibiotics and its combined pollutants is essential for aquatic environment and human health. In this study, a lignin-based organic flocculant named PRL-VAc-DMC was synthesized using pulp reject as the raw material, with vinyl acetate (VAc) and methacryloxyethyltrimethyl ammonium chloride (DMC) as the grafting monomers. A series of modern characterization methods were used to confirm the successful preparation of PRL-VAc-DMC and elucidate its polymerization mechanism. It was found that the Ph-OH group and its contiguous carbon atoms of lignin served as the primary active sites to react with grafting monomers. Flocculation experiments revealed that PRL-VAc-DMC could react with tetracycline (TC) through π-π* interaction, hydrophobic interaction, hydrogen bonding, and electrostatic attraction. With the coexistence of humic acid (HA) and Kaolin, the aromatic ring, hydroxyl, and amide group of TC could react with the benzene ring, hydroxyl group, and carboxyl group of HA, forming TC@HA@Kaolin complexes with Kaolin particles acting as the hydrophilic shell. The increase in particle size, electronegativity, and hydrophily of TC@HA@Kaolin complexes facilitated their interaction with PRL-VAc-DMC through strong interfacial interactions. Consequently, the presence of HA and Kaolin promoted the removal of TC. The synergistic removal mechanism of TC, HA, and Kaolin by PRL-VAc-DMC was systematically analyzed from the perspective of muti-interface interactions. This paper is of great significance for the comprehensive utilization of pulp reject and provides new insights into the flocculation mechanism at the molecular scale.
科研通智能强力驱动
Strongly Powered by AbleSci AI