Fused feature extract method for Φ-OTDR event recognition based on VGGish transfer learning

光时域反射计 特征(语言学) 过度拟合 计算机科学 分类器(UML) 特征向量 特征提取 卷积神经网络 学习迁移 人工智能 支持向量机 模式识别(心理学) 深度学习 人工神经网络 光纤 光纤传感器 光纤分路器 语言学 哲学 电信
作者
Jiaqi Gan,Yue-yu Xiao,Andong Zhang
出处
期刊:Applied Optics [The Optical Society]
卷期号:63 (20): 5411-5411
标识
DOI:10.1364/ao.529070
摘要

Thanks to the development of artificial intelligence algorithms, the event recognition of distributed optical fiber sensing systems has achieved high classification accuracy on many deep learning models. However, the large-scale samples required for the deep learning networks are difficult to collect for the optical fiber vibration sensing systems in actual scenarios. An overfitting problem due to insufficient data in the network training process will reduce the classification accuracy. In this paper, we propose a fused feature extract method suitable for the small dataset of Φ-OTDR systems. The high-dimensional features of signals in the frequency domain are extracted by a transfer learning method based on the VGGish framework. Combined with the characteristics of 12 different acquisition points in the space, the spatial distribution characteristics of the signal can be reflected. Fused with the spatial and temporal features, the features undergo a sample feature correction algorithm and are used in a SVM classifier for event recognition. Experimental results show that the VGGish, a pre-trained convolutional network for audio classification, can extract the knowledge features of Φ-OTDR vibration signals more efficiently. The recognition accuracy of six types of intrusion events can reach 95.0% through the corrected multi-domain features when only 960 samples are used as the training set. The accuracy is 17.7% higher than that of the single channel trained on VGGish without fine-tuning. Compared to other CNNs, such as ResNet, the feature extract method proposed can improve the accuracy by at least 4.9% on the same dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗的雅柔完成签到,获得积分10
1秒前
123应助ruiruirui采纳,获得30
1秒前
1秒前
刘亚茹完成签到,获得积分10
1秒前
yar举报shiqin求助涉嫌违规
1秒前
琳琳完成签到,获得积分10
1秒前
呆萌惜梦发布了新的文献求助10
2秒前
laser发布了新的文献求助10
2秒前
Lucas应助博闻采纳,获得10
4秒前
5秒前
5秒前
NexusExplorer应助直率香寒采纳,获得10
5秒前
6秒前
6秒前
星辰大海应助777采纳,获得10
7秒前
好鬼谷完成签到,获得积分20
7秒前
8秒前
9秒前
小材完成签到 ,获得积分10
9秒前
白白发布了新的文献求助10
11秒前
11秒前
huzi2009发布了新的文献求助30
12秒前
枫花雪发布了新的文献求助10
12秒前
明帅发布了新的文献求助10
12秒前
13秒前
15秒前
球啊球发布了新的文献求助30
15秒前
16秒前
吴军霄完成签到,获得积分10
16秒前
17秒前
17秒前
志文给志文的求助进行了留言
17秒前
CHH发布了新的文献求助30
18秒前
小黄完成签到 ,获得积分10
18秒前
博闻发布了新的文献求助10
19秒前
Xinxxx发布了新的文献求助10
19秒前
顾矜应助ccclau采纳,获得30
19秒前
甜橙完成签到,获得积分10
19秒前
19秒前
简单的芷云完成签到,获得积分10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304594
求助须知:如何正确求助?哪些是违规求助? 2938563
关于积分的说明 8489148
捐赠科研通 2613044
什么是DOI,文献DOI怎么找? 1427077
科研通“疑难数据库(出版商)”最低求助积分说明 662889
邀请新用户注册赠送积分活动 647483