Fused feature extract method for Φ-OTDR event recognition based on VGGish transfer learning

光时域反射计 特征(语言学) 过度拟合 计算机科学 分类器(UML) 特征向量 特征提取 卷积神经网络 学习迁移 人工智能 支持向量机 模式识别(心理学) 深度学习 人工神经网络 光纤 光纤传感器 光纤分路器 语言学 哲学 电信
作者
Jiaqi Gan,Yue-yu Xiao,Andong Zhang
出处
期刊:Applied Optics [Optica Publishing Group]
卷期号:63 (20): 5411-5411
标识
DOI:10.1364/ao.529070
摘要

Thanks to the development of artificial intelligence algorithms, the event recognition of distributed optical fiber sensing systems has achieved high classification accuracy on many deep learning models. However, the large-scale samples required for the deep learning networks are difficult to collect for the optical fiber vibration sensing systems in actual scenarios. An overfitting problem due to insufficient data in the network training process will reduce the classification accuracy. In this paper, we propose a fused feature extract method suitable for the small dataset of Φ-OTDR systems. The high-dimensional features of signals in the frequency domain are extracted by a transfer learning method based on the VGGish framework. Combined with the characteristics of 12 different acquisition points in the space, the spatial distribution characteristics of the signal can be reflected. Fused with the spatial and temporal features, the features undergo a sample feature correction algorithm and are used in a SVM classifier for event recognition. Experimental results show that the VGGish, a pre-trained convolutional network for audio classification, can extract the knowledge features of Φ-OTDR vibration signals more efficiently. The recognition accuracy of six types of intrusion events can reach 95.0% through the corrected multi-domain features when only 960 samples are used as the training set. The accuracy is 17.7% higher than that of the single channel trained on VGGish without fine-tuning. Compared to other CNNs, such as ResNet, the feature extract method proposed can improve the accuracy by at least 4.9% on the same dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
美女发布了新的文献求助10
1秒前
1秒前
2秒前
三水完成签到,获得积分10
2秒前
2秒前
小鱼干发布了新的文献求助10
3秒前
太微北发布了新的文献求助10
3秒前
5秒前
zhangzhangzhang完成签到,获得积分10
6秒前
Gotyababy发布了新的文献求助10
6秒前
关尔匕禾页完成签到,获得积分10
6秒前
6秒前
7秒前
Owen应助沉默毛豆采纳,获得10
7秒前
7秒前
火星上誉发布了新的文献求助10
7秒前
Jasper应助LL采纳,获得10
8秒前
8秒前
精神小伙完成签到,获得积分10
8秒前
Amon发布了新的文献求助10
8秒前
英俊的铭应助zgd采纳,获得10
8秒前
77发布了新的文献求助30
9秒前
扶南发布了新的文献求助10
9秒前
温暖的问候完成签到,获得积分10
9秒前
精神小伙发布了新的文献求助50
10秒前
10秒前
科研小白发布了新的文献求助10
11秒前
white发布了新的文献求助10
11秒前
挽秋发布了新的文献求助10
11秒前
123发布了新的文献求助10
11秒前
14秒前
14秒前
在水一方应助念初采纳,获得10
14秒前
15秒前
15秒前
Xiaofeng关注了科研通微信公众号
16秒前
wmt完成签到,获得积分10
17秒前
传奇3应助咔咔咔采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871