Fused feature extract method for Φ-OTDR event recognition based on VGGish transfer learning

光时域反射计 特征(语言学) 过度拟合 计算机科学 分类器(UML) 特征向量 特征提取 卷积神经网络 学习迁移 人工智能 支持向量机 模式识别(心理学) 深度学习 人工神经网络 光纤 光纤传感器 光纤分路器 电信 哲学 语言学
作者
Jiaqi Gan,Yue-yu Xiao,Andong Zhang
出处
期刊:Applied Optics [The Optical Society]
卷期号:63 (20): 5411-5411
标识
DOI:10.1364/ao.529070
摘要

Thanks to the development of artificial intelligence algorithms, the event recognition of distributed optical fiber sensing systems has achieved high classification accuracy on many deep learning models. However, the large-scale samples required for the deep learning networks are difficult to collect for the optical fiber vibration sensing systems in actual scenarios. An overfitting problem due to insufficient data in the network training process will reduce the classification accuracy. In this paper, we propose a fused feature extract method suitable for the small dataset of Φ-OTDR systems. The high-dimensional features of signals in the frequency domain are extracted by a transfer learning method based on the VGGish framework. Combined with the characteristics of 12 different acquisition points in the space, the spatial distribution characteristics of the signal can be reflected. Fused with the spatial and temporal features, the features undergo a sample feature correction algorithm and are used in a SVM classifier for event recognition. Experimental results show that the VGGish, a pre-trained convolutional network for audio classification, can extract the knowledge features of Φ-OTDR vibration signals more efficiently. The recognition accuracy of six types of intrusion events can reach 95.0% through the corrected multi-domain features when only 960 samples are used as the training set. The accuracy is 17.7% higher than that of the single channel trained on VGGish without fine-tuning. Compared to other CNNs, such as ResNet, the feature extract method proposed can improve the accuracy by at least 4.9% on the same dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助starts采纳,获得10
1秒前
YuenYuen完成签到,获得积分10
1秒前
儒雅无剑发布了新的文献求助10
1秒前
松山小吏完成签到,获得积分10
1秒前
1秒前
AAA苦读发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
2秒前
土豪的雅柔完成签到,获得积分10
3秒前
ddd发布了新的文献求助10
3秒前
简单的听寒完成签到,获得积分10
3秒前
3秒前
4秒前
科研通AI2S应助Haru采纳,获得30
4秒前
黑章鱼保罗完成签到,获得积分10
4秒前
文静谷秋完成签到,获得积分10
5秒前
Ttttt发布了新的文献求助10
6秒前
传奇3应助姚序东采纳,获得10
6秒前
6秒前
Sy发布了新的文献求助10
6秒前
DingShicong完成签到 ,获得积分10
6秒前
7秒前
聂落雁发布了新的文献求助10
7秒前
陈木子发布了新的文献求助10
7秒前
7秒前
朱子完成签到,获得积分10
8秒前
豌豆米应助科研通管家采纳,获得10
8秒前
Hello应助科研通管家采纳,获得10
8秒前
Rae完成签到 ,获得积分10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
李庭福发布了新的文献求助10
9秒前
ZX801发布了新的文献求助10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
帅气的绿凝完成签到,获得积分10
9秒前
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
ouyang发布了新的文献求助10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5338124
求助须知:如何正确求助?哪些是违规求助? 4475332
关于积分的说明 13928100
捐赠科研通 4370553
什么是DOI,文献DOI怎么找? 2401309
邀请新用户注册赠送积分活动 1394430
关于科研通互助平台的介绍 1366313