材料科学
离子
分子
膜
纳米技术
选择性
氢键
罗丹明
罗丹明B
化学工程
光化学
有机化学
荧光
化学
催化作用
生物化学
物理
量子力学
光催化
工程类
作者
Jiyao Yu,Tommaso Marchesi D’Alvise,Iain Harley,Adam Krysztofik,Ingo Lieberwirth,Przemysław Puła,Paweł W. Majewski,Bartłomiej Graczykowski,Johannes Hunger,Katharina Landfester,Seah Ling Kuan,Rachel Shi,Christopher V. Synatschke,Tanja Weil
标识
DOI:10.1002/adma.202401137
摘要
Abstract In contrast to biological cell membranes, it is still a major challenge for synthetic membranes to efficiently separate ions and small molecules due to their similar sizes in the sub‐nanometer range. Inspired by biological ion channels with their unique channel wall chemistry that facilitates ion sieving by ion‐channel interactions, the first free‐standing, ultrathin (10–17 nm) nanomembranes composed entirely of polydopamine (PDA) are reported here as ion and molecular sieves. These nanomembranes are obtained via an easily scalable electropolymerization strategy and provide nanochannels with various amine and phenolic hydroxyl groups that offer a favorable chemical environment for ion‐channel electrostatic and hydrogen bond interactions. They exhibit remarkable selectivity for monovalent ions over multivalent ions and larger species with K + /Mg 2+ of ≈4.2, K + /[Fe(CN) 6 ] 3− of ≈10.3, and K + /Rhodamine B of ≈273.0 in a pressure‐driven process, as well as cyclic reversible pH‐responsive gating properties. Infrared spectra reveal hydrogen bond formation between hydrated multivalent ions and PDA, which prevents the transport of multivalent ions and facilitates high selectivity. Chemically rich, free‐standing, and pH‐responsive PDA nanomembranes with specific interaction sites are proposed as customizable high‐performance sieves for a wide range of challenging separation requirements.
科研通智能强力驱动
Strongly Powered by AbleSci AI