Advancing cuffless blood pressure estimation: A PPG-based multi-task learning model for enhanced feature extraction and fusion

计算机科学 任务(项目管理) 融合 人工智能 萃取(化学) 特征提取 模式识别(心理学) 血压 语音识别 医学 内科学 化学 色谱法 工程类 哲学 系统工程 语言学
作者
Hanguang Xiao,Aohui Zhao,Wangwang Song,Tianqi Liu,Long Li,Yulin Li,Huanqi Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:95: 106378-106378 被引量:1
标识
DOI:10.1016/j.bspc.2024.106378
摘要

Cuffless continuous blood pressure (BP) monitoring is essential for personalized health management. Although existing cuffless BP estimation applies advanced machine learning techniques and integrates PPG signals, it is deficient in feature extraction and fusion. In addition, it is inefficient to train the model separately for different tasks. In this study, an advanced multi-domain and local–global feature parallel multi-task learning network (MDLG-MTLNet) is introduced. The MDLG-MTLNet was designed with three key aspects: first, temporal and multi-scale spatial features were extracted from PPG signals and their derivatives via a multi-scale spatial and temporal feature block; interaction of features from different domains was facilitated by the introduction of a local–global attention module that captured and efficiently fused local–global information; and lastly, intrinsic correlation between systolic (SBP) and diastolic blood pressure (DBP) was taken into account via a multi-task learning network to improve the overall performance of the model. On the MIMIC-II dataset, the MAEs of MDLG-MTLNet for DBP, SBP, and MBP were 2.64 mmHg, 1.57 mmHg, and 2.02 mmHg, respectively. These errors were superior to those of the existing methods, meeting the AAMI criteria, and earning an A grade according to the BHS protocol. The experimental results confirm the effectiveness of our proposed model in feature extraction and fusion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐的云发布了新的文献求助10
刚刚
英姑应助Qps采纳,获得10
1秒前
4秒前
4秒前
flora发布了新的文献求助10
4秒前
魂梦与君同完成签到 ,获得积分10
5秒前
酷波er应助su采纳,获得10
5秒前
6秒前
聪明新筠完成签到,获得积分10
6秒前
活泼巧曼完成签到,获得积分10
6秒前
充电宝应助肚子饿了采纳,获得10
6秒前
7秒前
7秒前
七木完成签到,获得积分10
7秒前
8秒前
归尘发布了新的文献求助10
9秒前
9秒前
9秒前
小文_official完成签到 ,获得积分10
10秒前
thunder完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
氨气完成签到 ,获得积分10
11秒前
震动的曲奇完成签到,获得积分10
11秒前
12秒前
12345发布了新的文献求助10
12秒前
13秒前
上官若男应助333采纳,获得10
13秒前
14秒前
进击的软骨完成签到,获得积分10
14秒前
JamesPei应助茶米采纳,获得10
14秒前
14秒前
初一发布了新的文献求助10
15秒前
15秒前
汉堡包应助sinlar采纳,获得10
15秒前
15秒前
15秒前
LOU发布了新的文献求助10
16秒前
stokis03完成签到 ,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207