Advancing cuffless blood pressure estimation: A PPG-based multi-task learning model for enhanced feature extraction and fusion

计算机科学 任务(项目管理) 融合 人工智能 萃取(化学) 特征提取 模式识别(心理学) 血压 语音识别 医学 内科学 化学 色谱法 工程类 哲学 系统工程 语言学
作者
Hanguang Xiao,Aohui Zhao,Wangwang Song,Tianqi Liu,Long Li,Yulin Li,Huanqi Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:95: 106378-106378 被引量:1
标识
DOI:10.1016/j.bspc.2024.106378
摘要

Cuffless continuous blood pressure (BP) monitoring is essential for personalized health management. Although existing cuffless BP estimation applies advanced machine learning techniques and integrates PPG signals, it is deficient in feature extraction and fusion. In addition, it is inefficient to train the model separately for different tasks. In this study, an advanced multi-domain and local–global feature parallel multi-task learning network (MDLG-MTLNet) is introduced. The MDLG-MTLNet was designed with three key aspects: first, temporal and multi-scale spatial features were extracted from PPG signals and their derivatives via a multi-scale spatial and temporal feature block; interaction of features from different domains was facilitated by the introduction of a local–global attention module that captured and efficiently fused local–global information; and lastly, intrinsic correlation between systolic (SBP) and diastolic blood pressure (DBP) was taken into account via a multi-task learning network to improve the overall performance of the model. On the MIMIC-II dataset, the MAEs of MDLG-MTLNet for DBP, SBP, and MBP were 2.64 mmHg, 1.57 mmHg, and 2.02 mmHg, respectively. These errors were superior to those of the existing methods, meeting the AAMI criteria, and earning an A grade according to the BHS protocol. The experimental results confirm the effectiveness of our proposed model in feature extraction and fusion.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助001399采纳,获得10
刚刚
一路狂奔发布了新的文献求助20
刚刚
孤独的访旋完成签到,获得积分10
刚刚
wanci应助整齐的凌瑶采纳,获得10
1秒前
我是老大应助刘刘采纳,获得10
1秒前
1秒前
打打应助憨憨采纳,获得10
1秒前
Murmansk发布了新的文献求助10
2秒前
南风知我意完成签到,获得积分10
2秒前
深情安青应助悦耳的冰枫采纳,获得10
2秒前
2秒前
1223完成签到,获得积分10
2秒前
serendipity发布了新的文献求助10
2秒前
SuMX发布了新的文献求助10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
搬砖工人完成签到,获得积分10
4秒前
4秒前
顺利发布了新的文献求助10
4秒前
5秒前
5秒前
时倾关注了科研通微信公众号
5秒前
5秒前
墨与白发布了新的文献求助10
6秒前
善学以致用应助linmo采纳,获得10
6秒前
我是老大应助linmo采纳,获得10
6秒前
上官若男应助linmo采纳,获得10
6秒前
田様应助linmo采纳,获得10
6秒前
传奇3应助linmo采纳,获得10
6秒前
111完成签到,获得积分20
6秒前
zglang511发布了新的文献求助10
6秒前
orixero应助linmo采纳,获得10
6秒前
鲤鱼豪完成签到,获得积分10
6秒前
酷波er应助linmo采纳,获得10
6秒前
6秒前
ding应助linmo采纳,获得10
6秒前
科目三应助linmo采纳,获得10
7秒前
7秒前
7秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693271
求助须知:如何正确求助?哪些是违规求助? 5091850
关于积分的说明 15210977
捐赠科研通 4850227
什么是DOI,文献DOI怎么找? 2601657
邀请新用户注册赠送积分活动 1553448
关于科研通互助平台的介绍 1511427