Advancing cuffless blood pressure estimation: A PPG-based multi-task learning model for enhanced feature extraction and fusion

计算机科学 任务(项目管理) 融合 人工智能 萃取(化学) 特征提取 模式识别(心理学) 血压 语音识别 医学 内科学 化学 色谱法 工程类 哲学 语言学 系统工程
作者
Hanguang Xiao,Aohui Zhao,Wangwang Song,Tianqi Liu,Long Li,Yulin Li,Huanqi Li
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:95: 106378-106378 被引量:1
标识
DOI:10.1016/j.bspc.2024.106378
摘要

Cuffless continuous blood pressure (BP) monitoring is essential for personalized health management. Although existing cuffless BP estimation applies advanced machine learning techniques and integrates PPG signals, it is deficient in feature extraction and fusion. In addition, it is inefficient to train the model separately for different tasks. In this study, an advanced multi-domain and local–global feature parallel multi-task learning network (MDLG-MTLNet) is introduced. The MDLG-MTLNet was designed with three key aspects: first, temporal and multi-scale spatial features were extracted from PPG signals and their derivatives via a multi-scale spatial and temporal feature block; interaction of features from different domains was facilitated by the introduction of a local–global attention module that captured and efficiently fused local–global information; and lastly, intrinsic correlation between systolic (SBP) and diastolic blood pressure (DBP) was taken into account via a multi-task learning network to improve the overall performance of the model. On the MIMIC-II dataset, the MAEs of MDLG-MTLNet for DBP, SBP, and MBP were 2.64 mmHg, 1.57 mmHg, and 2.02 mmHg, respectively. These errors were superior to those of the existing methods, meeting the AAMI criteria, and earning an A grade according to the BHS protocol. The experimental results confirm the effectiveness of our proposed model in feature extraction and fusion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助怡然嚣采纳,获得10
刚刚
1秒前
asd关闭了asd文献求助
1秒前
想发SCI发布了新的文献求助10
1秒前
1秒前
2秒前
886完成签到,获得积分10
2秒前
严珍珍完成签到 ,获得积分10
2秒前
玖a完成签到 ,获得积分10
4秒前
neil_match发布了新的文献求助10
5秒前
5秒前
5秒前
bkagyin应助体贴幼晴采纳,获得10
5秒前
6秒前
晨曦发布了新的文献求助10
6秒前
7秒前
9秒前
jim发布了新的文献求助10
10秒前
10秒前
情怀应助YaHe采纳,获得10
11秒前
zxymn发布了新的文献求助10
11秒前
面面完成签到,获得积分10
11秒前
晨曦完成签到,获得积分10
12秒前
13秒前
忧郁平文发布了新的文献求助10
13秒前
mei发布了新的文献求助10
13秒前
mysticwang完成签到,获得积分10
14秒前
yuaaaann发布了新的文献求助10
14秒前
大模型应助Honey采纳,获得10
15秒前
明理的小蜜蜂完成签到 ,获得积分10
15秒前
16秒前
17秒前
zyyin完成签到,获得积分10
18秒前
小桃发布了新的文献求助10
18秒前
affff完成签到 ,获得积分10
21秒前
21秒前
pipi发布了新的文献求助10
22秒前
23秒前
24秒前
su发布了新的文献求助10
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146272
求助须知:如何正确求助?哪些是违规求助? 2797641
关于积分的说明 7825012
捐赠科研通 2454032
什么是DOI,文献DOI怎么找? 1305957
科研通“疑难数据库(出版商)”最低求助积分说明 627630
版权声明 601503