Incremental Classification for Myoelectric Manifold Representation With Matrix-Formed Growing Neural Gas Network

手势 人工神经网络 手势识别 代表(政治) 计算机科学 歧管(流体力学) 模式识别(心理学) 人工智能 语音识别 工程类 机械工程 政治 政治学 法学
作者
Qichuan Ding,Peng Yin,Jinshuo Ai,Shuai Han
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (8): 10065-10073 被引量:2
标识
DOI:10.1109/tii.2024.3393004
摘要

Current surface electromyography (sEMG)-based gesture recognition only extracts time or frequency features from raw sEMG signals, and then puts the features together to generate sample vectors, which are further used as inputs to build fixed classification models. This way may bring out two issues. First, raw sEMG signals are often acquired from multichannel electrodes. Only extracting time or frequency features will lose the spatial topology information between different channels, and cannot reflect the movement synergy of different muscles, causing relatively low recognition accuracies. Second, fixed classifiers only recognize fixed gestures, and cannot handle dynamically increasing gestures, limiting the scalabilities of classifiers in applications. To this end, we introduce a myoelectric manifold representation based on the symmetric positive definite (SPD) matrix to express the spatial synergy of multiple muscles. Then, the growing neural gas network is extended to the SPD manifold space, and uses myoelectric matrices as inputs to realize the incremental gesture recognition, maintaining the space topology with very few prototypes. Extensive experiments were conducted on two public databases (Ninapro DB2 and DB5) and a self-collection database. Experimental results showed that our method was superior to current methods, increasing recognition accuracy by 1.63%–11.89%, and can continuously grow its recognition ability online, revealing the potential in implementing myoelectric interaction systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助A苏苏苏采纳,获得10
刚刚
1秒前
李焕弟完成签到,获得积分10
1秒前
3秒前
阳光正好完成签到,获得积分20
4秒前
义气幼珊发布了新的文献求助10
4秒前
WOLF发布了新的文献求助10
5秒前
Twila完成签到,获得积分10
5秒前
李爱国应助呆呆的猕猴桃采纳,获得10
6秒前
背后的小白菜完成签到,获得积分10
6秒前
8秒前
努力努力多活一天是一天完成签到,获得积分10
10秒前
14秒前
车水完成签到 ,获得积分10
20秒前
siqilinwillbephd完成签到 ,获得积分10
20秒前
A苏苏苏完成签到,获得积分10
22秒前
酷酷薯片完成签到,获得积分10
22秒前
22秒前
myth完成签到,获得积分10
25秒前
万能图书馆应助苞大米采纳,获得10
27秒前
斯文败类应助迷路睫毛采纳,获得10
30秒前
30秒前
3268590946发布了新的文献求助30
32秒前
852应助lzq采纳,获得10
32秒前
细心故事完成签到,获得积分10
33秒前
akmdh完成签到,获得积分10
33秒前
jia应助科研通管家采纳,获得10
33秒前
乌龟娟应助科研通管家采纳,获得10
34秒前
香蕉觅云应助科研通管家采纳,获得10
34秒前
xiehui发布了新的文献求助30
34秒前
大模型应助科研通管家采纳,获得10
34秒前
传奇3应助科研通管家采纳,获得10
34秒前
34秒前
罗实完成签到 ,获得积分10
34秒前
CipherSage应助科研通管家采纳,获得10
34秒前
乌龟娟应助科研通管家采纳,获得10
34秒前
NexusExplorer应助科研通管家采纳,获得10
34秒前
完美世界应助科研通管家采纳,获得10
34秒前
汉堡包应助科研通管家采纳,获得10
34秒前
乌龟娟应助科研通管家采纳,获得10
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
RNAの科学 ―時代を拓く生体分子― 金井 昭夫(編) 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3354349
求助须知:如何正确求助?哪些是违规求助? 2978709
关于积分的说明 8687170
捐赠科研通 2660335
什么是DOI,文献DOI怎么找? 1456596
科研通“疑难数据库(出版商)”最低求助积分说明 674417
邀请新用户注册赠送积分活动 665247