Incremental Classification for Myoelectric Manifold Representation With Matrix-Formed Growing Neural Gas Network

手势 人工神经网络 手势识别 代表(政治) 计算机科学 歧管(流体力学) 模式识别(心理学) 人工智能 语音识别 工程类 机械工程 政治 政治学 法学
作者
Qichuan Ding,Peng Yin,Jinshuo Ai,Shuai Han
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (8): 10065-10073 被引量:2
标识
DOI:10.1109/tii.2024.3393004
摘要

Current surface electromyography (sEMG)-based gesture recognition only extracts time or frequency features from raw sEMG signals, and then puts the features together to generate sample vectors, which are further used as inputs to build fixed classification models. This way may bring out two issues. First, raw sEMG signals are often acquired from multichannel electrodes. Only extracting time or frequency features will lose the spatial topology information between different channels, and cannot reflect the movement synergy of different muscles, causing relatively low recognition accuracies. Second, fixed classifiers only recognize fixed gestures, and cannot handle dynamically increasing gestures, limiting the scalabilities of classifiers in applications. To this end, we introduce a myoelectric manifold representation based on the symmetric positive definite (SPD) matrix to express the spatial synergy of multiple muscles. Then, the growing neural gas network is extended to the SPD manifold space, and uses myoelectric matrices as inputs to realize the incremental gesture recognition, maintaining the space topology with very few prototypes. Extensive experiments were conducted on two public databases (Ninapro DB2 and DB5) and a self-collection database. Experimental results showed that our method was superior to current methods, increasing recognition accuracy by 1.63%–11.89%, and can continuously grow its recognition ability online, revealing the potential in implementing myoelectric interaction systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
新司机发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
1秒前
汉堡包应助盼盼采纳,获得10
1秒前
Who1990完成签到,获得积分10
2秒前
水波不兴完成签到,获得积分10
2秒前
欢喜的早晨完成签到,获得积分10
2秒前
3秒前
英俊的铭应助DKW采纳,获得10
3秒前
3秒前
魔幻的盼芙完成签到 ,获得积分10
4秒前
lucifer完成签到,获得积分10
4秒前
zoey发布了新的文献求助10
5秒前
星辰大海应助77采纳,获得10
5秒前
大家好完成签到 ,获得积分10
5秒前
喻紫寒发布了新的文献求助10
7秒前
Gnor发布了新的文献求助10
7秒前
搬砖发布了新的文献求助30
7秒前
diaoyulao发布了新的文献求助30
8秒前
galvin完成签到,获得积分10
8秒前
葛博关注了科研通微信公众号
8秒前
zz完成签到 ,获得积分10
8秒前
Notdodead发布了新的文献求助10
9秒前
tip完成签到 ,获得积分10
10秒前
从烷烃开始重新生长完成签到,获得积分20
10秒前
10秒前
10秒前
Hello应助研友_LBKqyn采纳,获得10
11秒前
wonderwall完成签到,获得积分10
12秒前
一直都在完成签到 ,获得积分10
12秒前
ux完成签到 ,获得积分10
12秒前
12秒前
怡然的友容完成签到,获得积分10
12秒前
12秒前
13秒前
大力牌皮揣子完成签到 ,获得积分10
14秒前
14秒前
14秒前
EvenCai应助钇铯采纳,获得10
15秒前
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016787
求助须知:如何正确求助?哪些是违规求助? 3556966
关于积分的说明 11323317
捐赠科研通 3289698
什么是DOI,文献DOI怎么找? 1812525
邀请新用户注册赠送积分活动 888139
科研通“疑难数据库(出版商)”最低求助积分说明 812121