Incremental Classification for Myoelectric Manifold Representation With Matrix-Formed Growing Neural Gas Network

手势 人工神经网络 手势识别 代表(政治) 计算机科学 歧管(流体力学) 模式识别(心理学) 人工智能 语音识别 工程类 机械工程 政治 政治学 法学
作者
Qichuan Ding,Peng Yin,Jinshuo Ai,Shuai Han
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (8): 10065-10073 被引量:2
标识
DOI:10.1109/tii.2024.3393004
摘要

Current surface electromyography (sEMG)-based gesture recognition only extracts time or frequency features from raw sEMG signals, and then puts the features together to generate sample vectors, which are further used as inputs to build fixed classification models. This way may bring out two issues. First, raw sEMG signals are often acquired from multichannel electrodes. Only extracting time or frequency features will lose the spatial topology information between different channels, and cannot reflect the movement synergy of different muscles, causing relatively low recognition accuracies. Second, fixed classifiers only recognize fixed gestures, and cannot handle dynamically increasing gestures, limiting the scalabilities of classifiers in applications. To this end, we introduce a myoelectric manifold representation based on the symmetric positive definite (SPD) matrix to express the spatial synergy of multiple muscles. Then, the growing neural gas network is extended to the SPD manifold space, and uses myoelectric matrices as inputs to realize the incremental gesture recognition, maintaining the space topology with very few prototypes. Extensive experiments were conducted on two public databases (Ninapro DB2 and DB5) and a self-collection database. Experimental results showed that our method was superior to current methods, increasing recognition accuracy by 1.63%–11.89%, and can continuously grow its recognition ability online, revealing the potential in implementing myoelectric interaction systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘先生发布了新的文献求助10
刚刚
1秒前
阿凉发布了新的文献求助10
1秒前
Elan发布了新的文献求助10
2秒前
Mry发布了新的文献求助10
2秒前
研友_ngJQzL发布了新的文献求助10
3秒前
Luna完成签到 ,获得积分10
3秒前
在秦岭喝豆浆的北极熊完成签到 ,获得积分10
3秒前
tz666666发布了新的文献求助20
4秒前
4秒前
Lz发布了新的文献求助10
4秒前
动听曼荷发布了新的文献求助10
6秒前
ZZZ完成签到,获得积分10
6秒前
上官若男应助kingwill采纳,获得20
7秒前
8秒前
8秒前
一一给一一的求助进行了留言
9秒前
隐形曼青应助胡豆采纳,获得10
9秒前
9秒前
10秒前
11秒前
科目三应助苹果紊采纳,获得10
11秒前
11秒前
Mry完成签到,获得积分10
11秒前
11完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
研友_ngJQzL完成签到,获得积分10
13秒前
13秒前
14秒前
Elan完成签到,获得积分10
14秒前
范范完成签到,获得积分20
15秒前
胡豆完成签到,获得积分10
15秒前
Akim应助廖少跑不快采纳,获得10
15秒前
莱特昊发布了新的文献求助10
16秒前
万能图书馆应助qianqina采纳,获得10
16秒前
张磊发布了新的文献求助10
16秒前
王麒发布了新的文献求助10
16秒前
hhh完成签到,获得积分10
17秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226893
求助须知:如何正确求助?哪些是违规求助? 4398122
关于积分的说明 13688592
捐赠科研通 4262833
什么是DOI,文献DOI怎么找? 2339293
邀请新用户注册赠送积分活动 1336675
关于科研通互助平台的介绍 1292735