灰树花
多糖
化学
食品科学
作文(语言)
生物化学
哲学
语言学
作者
Guangjie BAI,Yizhen Xie,Xiong Gao,Chun Xiao,Tianqiao Yong,Longhua Huang,Manjun Cai,Yuanchao Liu,Huiping Hu,Shaodan Chen
标识
DOI:10.1016/j.ijbiomac.2024.132143
摘要
Natural polysaccharides interact with gut microbes to enhance human well-being. Grifola frondosa is a polysaccharides-rich edible and medicinal mushroom. The prebiotic potential of G. frondosa polysaccharides has been explored in recent years, however, the relationship between their various structural features and prebiotic activities is poorly understood. In this study, three homogenous polysaccharides GFP10, GFP21 and GFP22 having different molecular weights (Mw), monosaccharide compositions and glycosidic linkages were purified from G. frondosa, and their effects on intestinal microbial composition were compared. GFP10 was a fucomannogalactan with an Mw of 23.0 kDa, and it selectively inhibited Enterobacter, while GFP21 was a fucomannogalactoglucan with an Mw of 18.6 kDa, and it stimulated Catenibacterium. GFP22 was a 4.9 kDa mannoglucan that selectively inhibited Klebsiella and boosted Bifidobacterium, Catenibacterium and Phascolarctobacterium, and prominently promoted the production of short-chain fatty acids (SCFAs). The selective modulation of gut microbiota by polysaccharides was structure-dependent. A relatively lower Mw and a high proportion of glycosidic linkages like T-Glcp, 1,3-Glcp, 1,3,6-Glcp and 1,4-Glcp might be more easily utilized to produce SCFAs and beneficial for the proliferation of Catenibacterium and Phascolarctobacterium. This research provided a valuable resource for further exploring the structure-activity relationship and prebiotic activity of G. frondosa polysaccharides.
科研通智能强力驱动
Strongly Powered by AbleSci AI