铝
电池(电)
阴极
碳纤维
材料科学
离子
钾离子电池
化学工程
无机化学
冶金
复合材料
化学
锂离子电池
工程类
有机化学
物理化学
物理
复合数
热力学
功率(物理)
作者
Paloma Almodóvar,Natalia Rey‐Raap,Samanta L. Flores‐López,Belén Sotillo,L. C. D. Santos,Miguel Tinoco,Julio Ramírez‐Castellanos,I. Álvarez-Serrano,Marı́a Luisa López,Ignacio Cameán,A. Arenillas,Joaquı́n Chacón,Ana B. Garcı́a
标识
DOI:10.1002/batt.202400114
摘要
Abstract This study presents groundbreaking results in the field of rechargeable aluminium‐ion batteries, achieving stable capacities exceeding 300 mAh g −1 for more than 300 cycles. The key to this achievement lies in the utilization of tailor‐made carbon materials and a urea‐AlCl 3 ‐based electrolyte. The article investigates the optimal physicochemical properties of the active material necessary for effective electrodes for these aluminium‐ion batteries. This investigation employs a wide range of materials characterization techniques (XRD, SEM‐EDX, N 2 adsorption‐desorption isotherms, Hg porosimetry, XPS, FTIR, Raman and TEM‐EDX) and electrochemical performance analyses to delve into the subject. These findings represent a significant improvement in the capacity of aluminium‐ion batteries, bringing us closer to their implementation and commercialization. This achievement is attributed to the utilization of readily available, cost‐effective, and non‐corrosive materials. The ability to customize carbon xerogels and the use of the urea‐AlCl 3 electrolyte offer promising avenues for the practical implementation of these advanced battery technologies, leading to further enhancements in their performance and widespread adoption in various applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI