MCHAN: Prediction of Human Microbe-drug Associations Based on Multiview Contrastive Hypergraph Attention Network

计算机科学 网络拓扑 药物重新定位 超图 图形 人工智能 机器学习 合并(版本控制) 理论计算机科学 数据挖掘 药品 生物 数学 离散数学 情报检索 药理学 操作系统
作者
Guanghui Li,Ziyan Cao,Cheng Liang,Qiu Xiao,Jiawei Luo
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:19
标识
DOI:10.2174/0115748936288616240212073805
摘要

Background: Complex and diverse microbial communities play a pivotal role in human health and have become a new drug target. Exploring the connections between drugs and microbes not only provides profound insights into their mechanisms but also drives progress in drug discovery and repurposing. The use of wet lab experiments to identify associations is time-consuming and laborious. Hence, the advancement of precise and efficient computational methods can effectively improve the efficiency of association identification between microorganisms and drugs. Objective: In this experiment, we propose a new deep learning model, a new multiview comparative hypergraph attention network (MCHAN) method for human microbe–drug association prediction. Methods: First, we fuse multiple similarity matrices to obtain a fused microbial and drug similarity network. By combining graph convolutional networks with attention mechanisms, we extract key information from multiple perspectives. Then, we construct two network topologies based on the above fused data. One topology incorporates the concept of hypernodes to capture implicit relationships between microbes and drugs using virtual nodes to construct a hyperheterogeneous graph. Next, we propose a cross-contrastive learning task that facilitates the simultaneous guidance of graph embeddings from both perspectives, without the need for any labels. This approach allows us to bring nodes with similar features and network topologies closer while pushing away other nodes. Finally, we employ attention mechanisms to merge the outputs of the GCN and predict the associations between drugs and microbes. Results: To confirm the effectiveness of this method, we conduct experiments on three distinct datasets. The results demonstrate that the MCHAN model surpasses other methods in terms of performance. Furthermore, case studies provide additional evidence confirming the consistent predictive accuracy of the MCHAN model. Conclusion: MCHAN is expected to become a valuable tool for predicting potential associations between microbiota and drugs in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
缓慢新梅完成签到,获得积分10
2秒前
2秒前
顾矜应助shelly采纳,获得10
3秒前
Delphine发布了新的文献求助10
5秒前
明明完成签到 ,获得积分10
6秒前
7秒前
llllwwww完成签到,获得积分10
8秒前
YBY发布了新的文献求助10
9秒前
yu发布了新的文献求助10
9秒前
种一个月亮完成签到,获得积分10
9秒前
10秒前
彭于晏应助liu采纳,获得10
10秒前
11秒前
华仔应助Rita采纳,获得10
11秒前
11秒前
12秒前
思源应助研友_LmeK4L采纳,获得10
12秒前
bkagyin应助Mathilda采纳,获得10
13秒前
栾小鱼完成签到,获得积分10
14秒前
HY发布了新的文献求助10
16秒前
刻苦大西瓜完成签到,获得积分10
16秒前
研友_LmeK4L完成签到,获得积分10
17秒前
凡帝发布了新的文献求助10
17秒前
18秒前
xx发布了新的文献求助10
18秒前
19秒前
20秒前
露露发布了新的文献求助10
22秒前
shelly发布了新的文献求助10
22秒前
23秒前
Ava应助blossom采纳,获得30
24秒前
华仔应助缓慢新梅采纳,获得10
24秒前
在水一方应助HY采纳,获得10
24秒前
25秒前
27秒前
29秒前
不配.应助花陵采纳,获得20
31秒前
谷粱紫槐发布了新的文献求助10
31秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124648
求助须知:如何正确求助?哪些是违规求助? 2774953
关于积分的说明 7724821
捐赠科研通 2430484
什么是DOI,文献DOI怎么找? 1291144
科研通“疑难数据库(出版商)”最低求助积分说明 622066
版权声明 600323