MCHAN: Prediction of Human Microbe-drug Associations Based on Multiview Contrastive Hypergraph Attention Network

计算机科学 网络拓扑 药物重新定位 超图 图形 人工智能 机器学习 合并(版本控制) 理论计算机科学 数据挖掘 药品 生物 数学 离散数学 情报检索 药理学 操作系统
作者
Guanghui Li,Ziyan Cao,Cheng Liang,Qiu Xiao,Jiawei Luo
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:20 (1): 70-86
标识
DOI:10.2174/0115748936288616240212073805
摘要

Background: Complex and diverse microbial communities play a pivotal role in human health and have become a new drug target. Exploring the connections between drugs and microbes not only provides profound insights into their mechanisms but also drives progress in drug discovery and repurposing. The use of wet lab experiments to identify associations is time-consuming and laborious. Hence, the advancement of precise and efficient computational methods can effectively improve the efficiency of association identification between microorganisms and drugs. Objective: In this experiment, we propose a new deep learning model, a new multiview comparative hypergraph attention network (MCHAN) method for human microbe–drug association prediction. Methods: First, we fuse multiple similarity matrices to obtain a fused microbial and drug similarity network. By combining graph convolutional networks with attention mechanisms, we extract key information from multiple perspectives. Then, we construct two network topologies based on the above fused data. One topology incorporates the concept of hypernodes to capture implicit relationships between microbes and drugs using virtual nodes to construct a hyperheterogeneous graph. Next, we propose a cross-contrastive learning task that facilitates the simultaneous guidance of graph embeddings from both perspectives, without the need for any labels. This approach allows us to bring nodes with similar features and network topologies closer while pushing away other nodes. Finally, we employ attention mechanisms to merge the outputs of the GCN and predict the associations between drugs and microbes. Results: To confirm the effectiveness of this method, we conduct experiments on three distinct datasets. The results demonstrate that the MCHAN model surpasses other methods in terms of performance. Furthermore, case studies provide additional evidence confirming the consistent predictive accuracy of the MCHAN model. Conclusion: MCHAN is expected to become a valuable tool for predicting potential associations between microbiota and drugs in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助科研通管家采纳,获得10
刚刚
xakars完成签到,获得积分10
刚刚
科研通AI2S应助科研通管家采纳,获得10
1秒前
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
852应助如7而至采纳,获得10
1秒前
2秒前
zeze完成签到,获得积分20
2秒前
罗晓倩完成签到,获得积分10
3秒前
3秒前
汤泽琪发布了新的文献求助10
3秒前
幸福大白发布了新的文献求助10
3秒前
Janine发布了新的文献求助30
3秒前
超爱茶多酚完成签到,获得积分10
4秒前
沉默傲芙发布了新的文献求助10
5秒前
8秒前
dengy完成签到,获得积分10
8秒前
小马甲应助国际学术交流采纳,获得10
8秒前
Lzt应助NFF采纳,获得10
9秒前
古月发布了新的文献求助10
9秒前
沐晴发布了新的文献求助10
10秒前
星星完成签到,获得积分10
10秒前
羊村黑恶势力关注了科研通微信公众号
13秒前
14秒前
19秒前
无花果应助思维隋采纳,获得10
19秒前
23秒前
jialan_chen完成签到,获得积分20
25秒前
25秒前
coconu完成签到,获得积分20
25秒前
wbh发布了新的文献求助10
26秒前
Owen应助KT采纳,获得10
28秒前
coconu发布了新的文献求助10
29秒前
jialan_chen发布了新的文献求助10
29秒前
star发布了新的文献求助10
30秒前
30秒前
今后应助xakars采纳,获得10
31秒前
852应助学术裁缝采纳,获得10
32秒前
Kiling完成签到 ,获得积分10
32秒前
科目三应助wbh采纳,获得10
33秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993503
求助须知:如何正确求助?哪些是违规求助? 3534194
关于积分的说明 11264895
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806259
邀请新用户注册赠送积分活动 883055
科研通“疑难数据库(出版商)”最低求助积分说明 809702