亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Temperature prediction of lithium-ion battery based on artificial neural network model

人工神经网络 电池(电) 锂离子电池 热失控 残余物 工程类 计算机科学 人工智能 算法 量子力学 物理 功率(物理)
作者
Yuanlong Wang,Xiongjie Chen,Chaoliang Li,Yi Yu,Guan Zhou,Chunyan Wang,Wanzhong Zhao
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:228: 120482-120482 被引量:96
标识
DOI:10.1016/j.applthermaleng.2023.120482
摘要

Accurate temperature prediction is one of the most critical problems to improve battery performance, and prevent thermal runaway. However, the heat generation and heat dissipation of lithium-ion batteries have complex nonlinear characteristics and are easily affected by external factors, therefore it is difficult to accurately predict the battery temperature. In recent years, artificial neural network (ANN) has been widely used in many fields of lithium ion batteries due to its unique advantages in dealing with highly non-linear problems, such as battery modeling and SOC estimation, residual life (RUL) prediction and battery temperature prediction. However, there are few studies on temperature prediction of lithium ion batteries in foam metal thermal management system, and the current research has not reached an accurate conclusion to explain which neural network is better for temperature prediction. Therefore, an artificial neural network approach was used to estimate the temperature change of lithium-ion batteries in the metal foam thermal management system. Back propagation neural network (BP-NN), radial basis functions neural network (RBF-NN) and Elman neural networks (Elman-NN) were respectively applied to establish the temperature prediction model, and the temperature prediction performance of different neural network modeling techniques were compared. In order to verify the accuracy and validity of the neural network thermal model, the performance tests under the sample condition and the new condition were carried out respectively. The predicted result data and temperature contrast diagram of sample and test conditions are obtained. Elman neural network model has better adaptability and generalization ability, and the training time of Elman neural network model is shorter. It is more suitable for the temperature prediction of LIBs under metal foam and forced air cooling system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
爆米花应助CC采纳,获得10
34秒前
45秒前
pia叽完成签到 ,获得积分10
1分钟前
1分钟前
Enso发布了新的文献求助30
1分钟前
1分钟前
1分钟前
CC发布了新的文献求助10
1分钟前
LIU完成签到,获得积分10
1分钟前
Akim应助洛森采纳,获得10
2分钟前
缓慢的小兔子完成签到,获得积分10
2分钟前
2分钟前
zxcvvbb1001完成签到 ,获得积分10
2分钟前
2分钟前
丘比特应助麻辣香锅采纳,获得10
2分钟前
Enso发布了新的文献求助30
2分钟前
威武千青发布了新的文献求助10
2分钟前
洛森完成签到,获得积分10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
洛森发布了新的文献求助10
2分钟前
英俊的铭应助Maeve采纳,获得10
3分钟前
wang完成签到 ,获得积分10
3分钟前
Kristopher完成签到 ,获得积分10
3分钟前
正在努力的学术小垃圾完成签到 ,获得积分10
3分钟前
3分钟前
Maeve发布了新的文献求助10
3分钟前
特昂唐完成签到 ,获得积分10
3分钟前
科研通AI6应助科研之路采纳,获得10
4分钟前
Mrzrgh发布了新的文献求助10
4分钟前
汪洋一叶完成签到,获得积分10
4分钟前
4分钟前
852应助机智的佳肴采纳,获得10
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
王平安完成签到 ,获得积分10
6分钟前
魔幻的芳完成签到,获得积分10
6分钟前
悲凉的忆南完成签到,获得积分10
6分钟前
Ruby发布了新的文献求助20
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622214
求助须知:如何正确求助?哪些是违规求助? 4707219
关于积分的说明 14938928
捐赠科研通 4769330
什么是DOI,文献DOI怎么找? 2552232
邀请新用户注册赠送积分活动 1514336
关于科研通互助平台的介绍 1475038