Temperature prediction of lithium-ion battery based on artificial neural network model

人工神经网络 电池(电) 锂离子电池 热失控 残余物 工程类 计算机科学 人工智能 算法 量子力学 物理 功率(物理)
作者
Yuanlong Wang,Xiongjie Chen,Chaoliang Li,Yi Yu,Guan Zhou,Chunyan Wang,Wanzhong Zhao
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:228: 120482-120482 被引量:96
标识
DOI:10.1016/j.applthermaleng.2023.120482
摘要

Accurate temperature prediction is one of the most critical problems to improve battery performance, and prevent thermal runaway. However, the heat generation and heat dissipation of lithium-ion batteries have complex nonlinear characteristics and are easily affected by external factors, therefore it is difficult to accurately predict the battery temperature. In recent years, artificial neural network (ANN) has been widely used in many fields of lithium ion batteries due to its unique advantages in dealing with highly non-linear problems, such as battery modeling and SOC estimation, residual life (RUL) prediction and battery temperature prediction. However, there are few studies on temperature prediction of lithium ion batteries in foam metal thermal management system, and the current research has not reached an accurate conclusion to explain which neural network is better for temperature prediction. Therefore, an artificial neural network approach was used to estimate the temperature change of lithium-ion batteries in the metal foam thermal management system. Back propagation neural network (BP-NN), radial basis functions neural network (RBF-NN) and Elman neural networks (Elman-NN) were respectively applied to establish the temperature prediction model, and the temperature prediction performance of different neural network modeling techniques were compared. In order to verify the accuracy and validity of the neural network thermal model, the performance tests under the sample condition and the new condition were carried out respectively. The predicted result data and temperature contrast diagram of sample and test conditions are obtained. Elman neural network model has better adaptability and generalization ability, and the training time of Elman neural network model is shorter. It is more suitable for the temperature prediction of LIBs under metal foam and forced air cooling system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冯梦梦发布了新的文献求助10
刚刚
小蚂蚁发布了新的文献求助10
刚刚
1秒前
汉堡包应助LALball采纳,获得10
1秒前
orixero应助chengxc采纳,获得10
1秒前
1秒前
荼蘼如雪完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
Rishel_Li完成签到,获得积分10
2秒前
夕荀发布了新的文献求助10
2秒前
微尘完成签到,获得积分10
2秒前
无花果应助mumu采纳,获得30
3秒前
华仔应助专注的枫叶采纳,获得10
3秒前
纯真的元风完成签到,获得积分10
3秒前
3秒前
情怀应助zhuzhu采纳,获得10
3秒前
3秒前
微风往事发布了新的文献求助10
3秒前
3秒前
4秒前
开心的半仙完成签到,获得积分10
4秒前
大模型应助Yangfan采纳,获得10
4秒前
ding应助Gracywss采纳,获得20
4秒前
lh发布了新的文献求助10
4秒前
陶醉的代玉完成签到 ,获得积分10
5秒前
5秒前
LYJ完成签到,获得积分10
6秒前
ml完成签到 ,获得积分10
6秒前
罗是一完成签到,获得积分10
6秒前
爱吃泡芙完成签到,获得积分10
6秒前
6秒前
mirror完成签到,获得积分10
6秒前
zhs完成签到,获得积分10
7秒前
7秒前
7秒前
啦啦啦完成签到,获得积分10
8秒前
momo应助michael采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006