Temperature prediction of lithium-ion battery based on artificial neural network model

人工神经网络 电池(电) 锂离子电池 热失控 残余物 工程类 计算机科学 人工智能 算法 量子力学 物理 功率(物理)
作者
Yuanlong Wang,Xiongjie Chen,Chaoliang Li,Yi Yu,Guan Zhou,Chunyan Wang,Wanzhong Zhao
出处
期刊:Applied Thermal Engineering [Elsevier BV]
卷期号:228: 120482-120482 被引量:57
标识
DOI:10.1016/j.applthermaleng.2023.120482
摘要

Accurate temperature prediction is one of the most critical problems to improve battery performance, and prevent thermal runaway. However, the heat generation and heat dissipation of lithium-ion batteries have complex nonlinear characteristics and are easily affected by external factors, therefore it is difficult to accurately predict the battery temperature. In recent years, artificial neural network (ANN) has been widely used in many fields of lithium ion batteries due to its unique advantages in dealing with highly non-linear problems, such as battery modeling and SOC estimation, residual life (RUL) prediction and battery temperature prediction. However, there are few studies on temperature prediction of lithium ion batteries in foam metal thermal management system, and the current research has not reached an accurate conclusion to explain which neural network is better for temperature prediction. Therefore, an artificial neural network approach was used to estimate the temperature change of lithium-ion batteries in the metal foam thermal management system. Back propagation neural network (BP-NN), radial basis functions neural network (RBF-NN) and Elman neural networks (Elman-NN) were respectively applied to establish the temperature prediction model, and the temperature prediction performance of different neural network modeling techniques were compared. In order to verify the accuracy and validity of the neural network thermal model, the performance tests under the sample condition and the new condition were carried out respectively. The predicted result data and temperature contrast diagram of sample and test conditions are obtained. Elman neural network model has better adaptability and generalization ability, and the training time of Elman neural network model is shorter. It is more suitable for the temperature prediction of LIBs under metal foam and forced air cooling system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WuYueYun发布了新的文献求助10
1秒前
栗悟饭发布了新的文献求助10
2秒前
宁宁宁完成签到,获得积分10
3秒前
。。完成签到 ,获得积分10
3秒前
共享精神应助Hommand_藏山采纳,获得10
3秒前
3秒前
安详的冰蝶完成签到 ,获得积分10
3秒前
东方幼旋完成签到,获得积分10
4秒前
6秒前
Fan发布了新的文献求助10
8秒前
激昂的微笑完成签到,获得积分10
8秒前
10秒前
Nniu完成签到,获得积分10
10秒前
南风发布了新的文献求助10
11秒前
Hello应助WuYueYun采纳,获得10
11秒前
Paul111完成签到,获得积分10
12秒前
make完成签到,获得积分10
14秒前
tan完成签到,获得积分10
14秒前
Fan完成签到,获得积分10
19秒前
脑洞疼应助洛敏夕5743采纳,获得10
20秒前
orixero应助给你吃一个屁采纳,获得10
20秒前
super发布了新的文献求助10
23秒前
凶狠的小兔子完成签到,获得积分10
24秒前
故意的乐菱完成签到,获得积分20
27秒前
minghanl完成签到,获得积分10
27秒前
李健的粉丝团团长应助aowu采纳,获得10
28秒前
32秒前
正好完成签到,获得积分10
32秒前
34秒前
34秒前
36秒前
HiDasiy完成签到 ,获得积分10
37秒前
38秒前
逆蝶发布了新的文献求助10
38秒前
38秒前
香蕉寒梅发布了新的文献求助10
39秒前
40秒前
40秒前
40秒前
ding应助苏黎世采纳,获得10
42秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775662
求助须知:如何正确求助?哪些是违规求助? 3321243
关于积分的说明 10204340
捐赠科研通 3036109
什么是DOI,文献DOI怎么找? 1666001
邀请新用户注册赠送积分活动 797244
科研通“疑难数据库(出版商)”最低求助积分说明 757766