Temperature prediction of lithium-ion battery based on artificial neural network model

人工神经网络 电池(电) 锂离子电池 热失控 残余物 工程类 计算机科学 人工智能 算法 量子力学 物理 功率(物理)
作者
Yuanlong Wang,Xiongjie Chen,Chaoliang Li,Yi Yu,Guan Zhou,Chunyan Wang,Wanzhong Zhao
出处
期刊:Applied Thermal Engineering [Elsevier BV]
卷期号:228: 120482-120482 被引量:96
标识
DOI:10.1016/j.applthermaleng.2023.120482
摘要

Accurate temperature prediction is one of the most critical problems to improve battery performance, and prevent thermal runaway. However, the heat generation and heat dissipation of lithium-ion batteries have complex nonlinear characteristics and are easily affected by external factors, therefore it is difficult to accurately predict the battery temperature. In recent years, artificial neural network (ANN) has been widely used in many fields of lithium ion batteries due to its unique advantages in dealing with highly non-linear problems, such as battery modeling and SOC estimation, residual life (RUL) prediction and battery temperature prediction. However, there are few studies on temperature prediction of lithium ion batteries in foam metal thermal management system, and the current research has not reached an accurate conclusion to explain which neural network is better for temperature prediction. Therefore, an artificial neural network approach was used to estimate the temperature change of lithium-ion batteries in the metal foam thermal management system. Back propagation neural network (BP-NN), radial basis functions neural network (RBF-NN) and Elman neural networks (Elman-NN) were respectively applied to establish the temperature prediction model, and the temperature prediction performance of different neural network modeling techniques were compared. In order to verify the accuracy and validity of the neural network thermal model, the performance tests under the sample condition and the new condition were carried out respectively. The predicted result data and temperature contrast diagram of sample and test conditions are obtained. Elman neural network model has better adaptability and generalization ability, and the training time of Elman neural network model is shorter. It is more suitable for the temperature prediction of LIBs under metal foam and forced air cooling system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gaara0504发布了新的文献求助10
1秒前
1秒前
科目三应助rainb采纳,获得20
1秒前
1秒前
xiaohua给xiaohua的求助进行了留言
2秒前
2秒前
2秒前
JJbond发布了新的文献求助10
2秒前
邓邓完成签到,获得积分10
2秒前
3秒前
ZitongGao完成签到,获得积分10
3秒前
3秒前
小麦子儿完成签到 ,获得积分10
4秒前
5秒前
Orange应助失眠的无心采纳,获得10
5秒前
6秒前
6秒前
6秒前
羊羊完成签到,获得积分10
6秒前
沼泽发布了新的文献求助10
7秒前
番西茄发布了新的文献求助10
7秒前
8秒前
8秒前
忧郁盼夏发布了新的文献求助10
8秒前
圈圈完成签到 ,获得积分10
9秒前
10秒前
10秒前
解语花发布了新的文献求助10
10秒前
彭于晏应助xmyyy采纳,获得10
10秒前
努力奋斗发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
12秒前
zkylh应助Sarina采纳,获得10
12秒前
领导范儿应助KY采纳,获得10
12秒前
郭郭发布了新的文献求助10
12秒前
Mirabel发布了新的文献求助10
12秒前
wwwwyx发布了新的文献求助10
14秒前
物质尽头完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5005455
求助须知:如何正确求助?哪些是违规求助? 4249046
关于积分的说明 13239754
捐赠科研通 4048665
什么是DOI,文献DOI怎么找? 2214969
邀请新用户注册赠送积分活动 1224885
关于科研通互助平台的介绍 1145312