已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Temperature prediction of lithium-ion battery based on artificial neural network model

人工神经网络 电池(电) 锂离子电池 热失控 残余物 工程类 计算机科学 人工智能 算法 量子力学 物理 功率(物理)
作者
Yuanlong Wang,Xiongjie Chen,Chaoliang Li,Yi Yu,Guan Zhou,Chunyan Wang,Wanzhong Zhao
出处
期刊:Applied Thermal Engineering [Elsevier]
卷期号:228: 120482-120482 被引量:96
标识
DOI:10.1016/j.applthermaleng.2023.120482
摘要

Accurate temperature prediction is one of the most critical problems to improve battery performance, and prevent thermal runaway. However, the heat generation and heat dissipation of lithium-ion batteries have complex nonlinear characteristics and are easily affected by external factors, therefore it is difficult to accurately predict the battery temperature. In recent years, artificial neural network (ANN) has been widely used in many fields of lithium ion batteries due to its unique advantages in dealing with highly non-linear problems, such as battery modeling and SOC estimation, residual life (RUL) prediction and battery temperature prediction. However, there are few studies on temperature prediction of lithium ion batteries in foam metal thermal management system, and the current research has not reached an accurate conclusion to explain which neural network is better for temperature prediction. Therefore, an artificial neural network approach was used to estimate the temperature change of lithium-ion batteries in the metal foam thermal management system. Back propagation neural network (BP-NN), radial basis functions neural network (RBF-NN) and Elman neural networks (Elman-NN) were respectively applied to establish the temperature prediction model, and the temperature prediction performance of different neural network modeling techniques were compared. In order to verify the accuracy and validity of the neural network thermal model, the performance tests under the sample condition and the new condition were carried out respectively. The predicted result data and temperature contrast diagram of sample and test conditions are obtained. Elman neural network model has better adaptability and generalization ability, and the training time of Elman neural network model is shorter. It is more suitable for the temperature prediction of LIBs under metal foam and forced air cooling system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuting发布了新的文献求助10
刚刚
Jemezs完成签到,获得积分10
1秒前
2秒前
want驳回了xxfsx应助
2秒前
Lucas应助冒险寻羊采纳,获得10
3秒前
3秒前
语嘘嘘发布了新的文献求助30
4秒前
electricelectric应助harry采纳,获得30
5秒前
5秒前
6秒前
GPTea应助姜宇航采纳,获得20
8秒前
Jemezs发布了新的文献求助10
9秒前
11秒前
杀鸡发布了新的文献求助10
11秒前
11秒前
123完成签到,获得积分10
13秒前
华桦子完成签到 ,获得积分10
13秒前
13秒前
科研通AI6应助杭谷波采纳,获得10
14秒前
上上签发布了新的文献求助10
15秒前
yyyyy完成签到,获得积分10
17秒前
科研通AI6应助可爱从霜采纳,获得10
18秒前
19秒前
小小发布了新的文献求助10
19秒前
隐形曼青应助盖盖盖浇饭采纳,获得10
20秒前
Lin发布了新的文献求助10
22秒前
传奇3应助秋月明采纳,获得10
22秒前
moyu123发布了新的文献求助10
22秒前
Lucas应助曾培采纳,获得10
22秒前
bioglia完成签到,获得积分10
25秒前
小二完成签到 ,获得积分10
26秒前
希望天下0贩的0应助杀鸡采纳,获得10
26秒前
香蕉觅云应助合适尔蝶采纳,获得10
26秒前
27秒前
乐生完成签到,获得积分10
28秒前
平淡的采文完成签到,获得积分10
29秒前
29秒前
大胆剑封完成签到,获得积分20
29秒前
30秒前
老实醉冬完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355874
求助须知:如何正确求助?哪些是违规求助? 4487717
关于积分的说明 13970886
捐赠科研通 4388491
什么是DOI,文献DOI怎么找? 2411104
邀请新用户注册赠送积分活动 1403650
关于科研通互助平台的介绍 1377279