Temperature prediction of lithium-ion battery based on artificial neural network model

人工神经网络 电池(电) 锂离子电池 热失控 残余物 工程类 计算机科学 人工智能 算法 量子力学 物理 功率(物理)
作者
Yuanlong Wang,Xiongjie Chen,Chaoliang Li,Yi Yu,Guan Zhou,Chunyan Wang,Wanzhong Zhao
出处
期刊:Applied Thermal Engineering [Elsevier BV]
卷期号:228: 120482-120482 被引量:57
标识
DOI:10.1016/j.applthermaleng.2023.120482
摘要

Accurate temperature prediction is one of the most critical problems to improve battery performance, and prevent thermal runaway. However, the heat generation and heat dissipation of lithium-ion batteries have complex nonlinear characteristics and are easily affected by external factors, therefore it is difficult to accurately predict the battery temperature. In recent years, artificial neural network (ANN) has been widely used in many fields of lithium ion batteries due to its unique advantages in dealing with highly non-linear problems, such as battery modeling and SOC estimation, residual life (RUL) prediction and battery temperature prediction. However, there are few studies on temperature prediction of lithium ion batteries in foam metal thermal management system, and the current research has not reached an accurate conclusion to explain which neural network is better for temperature prediction. Therefore, an artificial neural network approach was used to estimate the temperature change of lithium-ion batteries in the metal foam thermal management system. Back propagation neural network (BP-NN), radial basis functions neural network (RBF-NN) and Elman neural networks (Elman-NN) were respectively applied to establish the temperature prediction model, and the temperature prediction performance of different neural network modeling techniques were compared. In order to verify the accuracy and validity of the neural network thermal model, the performance tests under the sample condition and the new condition were carried out respectively. The predicted result data and temperature contrast diagram of sample and test conditions are obtained. Elman neural network model has better adaptability and generalization ability, and the training time of Elman neural network model is shorter. It is more suitable for the temperature prediction of LIBs under metal foam and forced air cooling system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
orixero应助锅锅采纳,获得10
1秒前
木木完成签到 ,获得积分10
1秒前
2秒前
。。。发布了新的文献求助10
3秒前
打打应助Luo采纳,获得30
3秒前
3秒前
汉堡包应助王文杰采纳,获得10
3秒前
4秒前
积极幻桃关注了科研通微信公众号
4秒前
周美玉完成签到,获得积分10
5秒前
5秒前
6秒前
小远发布了新的文献求助10
6秒前
SYLH应助肥肥采纳,获得20
6秒前
starry发布了新的文献求助10
6秒前
7秒前
7秒前
熊二发布了新的文献求助10
7秒前
迷路小丸子完成签到,获得积分10
7秒前
斯文发布了新的文献求助10
8秒前
田様应助肉肉采纳,获得10
8秒前
闪闪茉莉关注了科研通微信公众号
9秒前
上官若男应助nylon采纳,获得10
9秒前
张暖暖完成签到,获得积分10
10秒前
在水一方应助一一采纳,获得30
10秒前
10秒前
Boxcc完成签到 ,获得积分10
10秒前
77发布了新的文献求助10
11秒前
zbyan发布了新的文献求助10
11秒前
12秒前
daheeeee发布了新的文献求助10
12秒前
13秒前
大个应助恐怖稽器人采纳,获得10
13秒前
wjay发布了新的文献求助10
13秒前
深情安青应助shaylie采纳,获得10
13秒前
15秒前
15秒前
巴拉发布了新的文献求助10
15秒前
玩命的醉山完成签到,获得积分10
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980154
求助须知:如何正确求助?哪些是违规求助? 3524160
关于积分的说明 11220159
捐赠科研通 3261641
什么是DOI,文献DOI怎么找? 1800734
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807232