Identification of Potent and Selective Acetylcholinesterase/Butyrylcholinesterase Inhibitors by Virtual Screening

丁酰胆碱酯酶 乙酰胆碱酯酶 阿切 虚拟筛选 化学 胆碱酯酶 药理学 生物化学 药物发现 生物
作者
Tuan Xu,Shuaizhang Li,Andrew J. Li,Jinghua Zhao,Srilatha Sakamuru,Wenwei Huang,Menghang Xia,Ruili Huang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (8): 2321-2330 被引量:7
标识
DOI:10.1021/acs.jcim.3c00230
摘要

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) play important roles in human neurodegenerative disorders such as Alzheimer's disease. In this study, machine learning methods were applied to develop quantitative structure-activity relationship models for the prediction of novel AChE and BChE inhibitors based on data from quantitative high-throughput screening assays. The models were used to virtually screen an in-house collection of ∼360K compounds. The optimal models achieved good performance with area under the receiver operating characteristic curve values ranging from 0.83 ± 0.03 to 0.87 ± 0.01 for the prediction of AChE/BChE inhibition activity and selectivity. Experimental validation showed that the best-performing models increased the assay hit rate by several folds. We identified 88 novel AChE and 126 novel BChE inhibitors, 25% (AChE) and 53% (BChE) of which showed potent inhibitory effects (IC50 < 5 μM). In addition, structure-activity relationship analysis of the BChE inhibitors revealed scaffolds for chemistry design and optimization. In conclusion, machine learning models were shown to efficiently identify potent and selective inhibitors against AChE and BChE and novel structural series for further design and development of potential therapeutics against neurodegenerative disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ivy完成签到,获得积分10
2秒前
2秒前
自然寒烟完成签到,获得积分10
2秒前
huangyao发布了新的文献求助10
3秒前
情怀应助Peix采纳,获得10
4秒前
4秒前
无花果应助花花金兔采纳,获得10
4秒前
suwan完成签到,获得积分10
4秒前
云凡应助yofan采纳,获得10
5秒前
6秒前
Pennyway发布了新的文献求助10
7秒前
自然寒烟发布了新的文献求助10
7秒前
雨天完成签到,获得积分10
8秒前
Owen应助qiuqiu采纳,获得10
10秒前
11秒前
14秒前
香精发布了新的文献求助10
16秒前
惊涛骇浪完成签到,获得积分10
17秒前
18秒前
19秒前
20秒前
柯一一应助科研通管家采纳,获得10
20秒前
香蕉觅云应助科研通管家采纳,获得10
21秒前
柯一一应助科研通管家采纳,获得10
21秒前
在水一方应助科研通管家采纳,获得10
21秒前
yydragen应助科研通管家采纳,获得30
21秒前
Qiao应助科研通管家采纳,获得10
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
21秒前
21秒前
21秒前
26秒前
26秒前
pan发布了新的文献求助10
27秒前
Yan完成签到,获得积分10
28秒前
iiiid发布了新的文献求助10
30秒前
bemyselfelsa发布了新的文献求助10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967279
求助须知:如何正确求助?哪些是违规求助? 3512575
关于积分的说明 11164253
捐赠科研通 3247522
什么是DOI,文献DOI怎么找? 1793850
邀请新用户注册赠送积分活动 874729
科研通“疑难数据库(出版商)”最低求助积分说明 804495