Fake news detection: A survey of graph neural network methods

计算机科学 假新闻 数据科学 分类学(生物学) 社会化媒体 2019年冠状病毒病(COVID-19) 万维网 互联网隐私 传染病(医学专业) 植物 医学 生物 病理 疾病
作者
Huyen Trang Phan,Ngoc Thanh Nguyên,Dosam Hwang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:139: 110235-110235 被引量:68
标识
DOI:10.1016/j.asoc.2023.110235
摘要

The emergence of various social networks has generated vast volumes of data. Efficient methods for capturing, distinguishing, and filtering real and fake news are becoming increasingly important, especially after the outbreak of the COVID-19 pandemic. This study conducts a multiaspect and systematic review of the current state and challenges of graph neural networks (GNNs) for fake news detection systems and outlines a comprehensive approach to implementing fake news detection systems using GNNs. Furthermore, advanced GNN-based techniques for implementing pragmatic fake news detection systems are discussed from multiple perspectives. First, we introduce the background and overview related to fake news, fake news detection, and GNNs. Second, we provide a GNN taxonomy-based fake news detection taxonomy and review and highlight models in categories. Subsequently, we compare critical ideas, advantages, and disadvantages of the methods in categories. Next, we discuss the possible challenges of fake news detection and GNNs. Finally, we present several open issues in this area and discuss potential directions for future research. We believe that this review can be utilized by systems practitioners and newcomers in surmounting current impediments and navigating future situations by deploying a fake news detection system using GNNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tuzhihong发布了新的文献求助10
刚刚
刚刚
sherry发布了新的文献求助10
刚刚
司兜发布了新的文献求助10
刚刚
小刺猬完成签到,获得积分10
1秒前
liuziop发布了新的文献求助10
1秒前
cwy完成签到,获得积分10
1秒前
sssssssdsds发布了新的文献求助10
1秒前
端庄的蜡烛完成签到,获得积分10
1秒前
1秒前
唐古拉完成签到,获得积分10
2秒前
2秒前
研友_nPxP9n完成签到,获得积分10
2秒前
高大的迎梦完成签到,获得积分10
2秒前
123完成签到,获得积分10
2秒前
纯真电源完成签到,获得积分10
2秒前
嘎嘎嘎发布了新的文献求助10
3秒前
香蕉觅云应助Bepa采纳,获得10
3秒前
赘婿应助嘎嘣脆采纳,获得10
3秒前
大黄完成签到,获得积分10
3秒前
4秒前
科目三应助丰富的不惜采纳,获得10
4秒前
4秒前
cocolu完成签到,获得积分0
4秒前
HJ完成签到,获得积分10
4秒前
刘岩松完成签到,获得积分20
5秒前
5秒前
lee发布了新的文献求助10
5秒前
搜集达人应助liuziop采纳,获得10
5秒前
NexusExplorer应助hhhee采纳,获得10
6秒前
cing发布了新的文献求助10
6秒前
7秒前
王乐多完成签到,获得积分10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
JamesPei应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572570
求助须知:如何正确求助?哪些是违规求助? 3993286
关于积分的说明 12361873
捐赠科研通 3666367
什么是DOI,文献DOI怎么找? 2020752
邀请新用户注册赠送积分活动 1054961
科研通“疑难数据库(出版商)”最低求助积分说明 942355