A Robust Shape-Aware Rib Fracture Detection and Segmentation Framework With Contrastive Learning

计算机科学 分割 人工智能 稳健性(进化) 深度学习 计算机视觉 图像分割 目标检测 模式识别(心理学) 像素 胸腔 医学 生物化学 基因 解剖 化学
作者
Zheng Cao,Liming Xu,Danny Z. Chen,Honghao Gao,Jian Wu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 1584-1591 被引量:16
标识
DOI:10.1109/tmm.2023.3263074
摘要

The rib fracture is a common type of thoracic skeletal trauma, and its inspections using computed tomography (CT) scans are critical for clinical evaluation and treatment planning. However, it is often challenging for radiologists to quickly and accurately detect rib fractures due to tiny objects and blurriness in large 3D CT images. Previous diagnoses for automatic rib fracture mostly relied on deep learning (DL)-based object detection, which highly depends on label quality and quantity. Moreover, general object detection methods did not take into consideration the typically elongated and oblique shapes of ribs in 3D volumes. To address these issues, we propose a shape-aware method based on DL called SA-FracNet for rib fracture detection and segmentation. First, we design a pixel-level pretext task founded on contrastive learning on massive unlabeled CT images. Second, we train the fine-tuned rib fracture detection model based on the pre-trained weights. Third, we develop a fracture shape-aware multi-task segmentation network to delineate the fracture based on the detection result. Experiments demonstrate that our proposed SA-FracNet achieves state-of-the-art rib fracture detection and segmentation performance on the public RibFrac dataset, with a detection sensitivity of 0.926 and segmentation Dice of 0.754. Test on a private dataset also validates the robustness and generalization of our SA-FracNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助科研圣体采纳,获得10
2秒前
3秒前
柯飞扬发布了新的文献求助10
3秒前
鱿鱼发布了新的文献求助10
4秒前
一只抱枕给一只抱枕的求助进行了留言
5秒前
123study0发布了新的文献求助10
6秒前
Lucas应助小鬼丶采纳,获得10
6秒前
飘逸果汁发布了新的文献求助10
7秒前
8秒前
8秒前
yj应助123采纳,获得10
9秒前
9秒前
9秒前
a3979107发布了新的文献求助10
10秒前
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
晴空万里应助科研通管家采纳,获得10
11秒前
我是老大应助科研通管家采纳,获得20
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
大个应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
打打应助科研通管家采纳,获得10
12秒前
12秒前
hx发布了新的文献求助10
12秒前
12秒前
仙林AK47发布了新的文献求助20
14秒前
一块小饼干完成签到,获得积分10
15秒前
16秒前
Lenna45发布了新的文献求助10
16秒前
19秒前
21秒前
风中白秋完成签到,获得积分20
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125878
求助须知:如何正确求助?哪些是违规求助? 4329554
关于积分的说明 13491294
捐赠科研通 4164468
什么是DOI,文献DOI怎么找? 2282962
邀请新用户注册赠送积分活动 1284016
关于科研通互助平台的介绍 1223406