A Robust Shape-Aware Rib Fracture Detection and Segmentation Framework With Contrastive Learning

计算机科学 分割 人工智能 稳健性(进化) 深度学习 计算机视觉 图像分割 目标检测 模式识别(心理学) 像素 胸腔 医学 生物化学 基因 解剖 化学
作者
Zheng Cao,Liming Xu,Danny Z. Chen,Honghao Gao,Jian Wu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 1584-1591 被引量:16
标识
DOI:10.1109/tmm.2023.3263074
摘要

The rib fracture is a common type of thoracic skeletal trauma, and its inspections using computed tomography (CT) scans are critical for clinical evaluation and treatment planning. However, it is often challenging for radiologists to quickly and accurately detect rib fractures due to tiny objects and blurriness in large 3D CT images. Previous diagnoses for automatic rib fracture mostly relied on deep learning (DL)-based object detection, which highly depends on label quality and quantity. Moreover, general object detection methods did not take into consideration the typically elongated and oblique shapes of ribs in 3D volumes. To address these issues, we propose a shape-aware method based on DL called SA-FracNet for rib fracture detection and segmentation. First, we design a pixel-level pretext task founded on contrastive learning on massive unlabeled CT images. Second, we train the fine-tuned rib fracture detection model based on the pre-trained weights. Third, we develop a fracture shape-aware multi-task segmentation network to delineate the fracture based on the detection result. Experiments demonstrate that our proposed SA-FracNet achieves state-of-the-art rib fracture detection and segmentation performance on the public RibFrac dataset, with a detection sensitivity of 0.926 and segmentation Dice of 0.754. Test on a private dataset also validates the robustness and generalization of our SA-FracNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lincool完成签到,获得积分10
1秒前
ldkl应助收手吧大哥采纳,获得30
1秒前
完美世界应助haoqisheng采纳,获得10
1秒前
小马甲应助郑zz采纳,获得10
2秒前
魔幻小蚂蚁完成签到,获得积分10
2秒前
2秒前
xzp发布了新的文献求助10
2秒前
YU关注了科研通微信公众号
2秒前
2秒前
cw发布了新的文献求助10
2秒前
2秒前
之之完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
tty发布了新的文献求助10
3秒前
xldhts完成签到,获得积分10
4秒前
不太想学习完成签到 ,获得积分10
4秒前
4秒前
Bowen发布了新的文献求助10
4秒前
5秒前
5秒前
科研通AI6应助困困困困采纳,获得30
5秒前
VDC发布了新的文献求助10
5秒前
脑洞疼应助Gary采纳,获得10
5秒前
5秒前
6秒前
momucy发布了新的文献求助10
6秒前
dahuahau完成签到,获得积分10
7秒前
7秒前
Klenows发布了新的文献求助10
8秒前
笨笨秋白完成签到,获得积分10
8秒前
echoyao发布了新的文献求助10
8秒前
QhL完成签到,获得积分10
8秒前
8秒前
情怀应助maodoujie采纳,获得10
8秒前
Auh发布了新的文献求助10
8秒前
1112关注了科研通微信公众号
9秒前
大模型应助ccc采纳,获得10
9秒前
tuyfytjt发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576354
求助须知:如何正确求助?哪些是违规求助? 3995613
关于积分的说明 12369373
捐赠科研通 3669547
什么是DOI,文献DOI怎么找? 2022294
邀请新用户注册赠送积分活动 1056342
科研通“疑难数据库(出版商)”最低求助积分说明 943562