亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Abstract 5706: ImmunoPROFILE: A prospective implementation of clinically validated, quantitative immune cell profiling test identifies tumor-infiltrating CD8+ and PD-1+ cell densities as prognostic biomarkers across a 2,023 patient pan-cancer cohort treated with different therapies

医学 生物标志物 FOXP3型 CD8型 肿瘤科 肿瘤浸润淋巴细胞 人口 一致性 比例危险模型 免疫系统 内科学 病理 免疫学 生物 生物化学 环境卫生
作者
James Lindsay,Bijaya Sharma,Kristen D. Felt,Anita Giobbie‐Hurder,Ian Dryg,Jason L. Weirather,Jennifer Altreuter,Tali Mazor,Priti Kumari,Joao Alessi,Ajit J. Nirmal,Michael P. Manos,Ananth R. Kumar,William Lotter,Ethan Cerami,B. Johnson,Neil I. Lindeman,Lynette M. Sholl,Jonathan A. Nowak,Scott J. Rodig
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:83 (7_Supplement): 5706-5706
标识
DOI:10.1158/1538-7445.am2023-5706
摘要

Abstract Tumor-infiltrating lymphocyte (TIL) density has been identified as a prognostic and predictive biomarker in select tumors treated with defined therapies. These observations suggest that TILs may be general markers of patient outcomes, but evidence in support of this hypothesis has been limited by small cohorts. We validated ImmunoPROFILE, a multiplexed immunofluorescence (MIF)-based assay coupled with machine-learning-based image analysis, to identify and quantify tumor cells (cytokeratin, PAX5, PAX8, SOX10), T cells (CD8), T-regulatory cells (FOXP3), exhausted cells (PD-1) and immunosuppressive tumor and immune cells (PD-L1). We applied the MIF panel to specimens from patients collected prospectively over three years and analyzed 2,023 cases across 27 tumor types. The association between biomarkers and overall survival (OS) was investigated using Cox models controlling for patient risk factors such as cancer type, metastatic vs. primary disease, age, and gender. Multivariable biomarker selection was based on likelihood ratios. The assay was highly robust (success rate 97%), reproducible (inter-scanning and intra-staining density controls within 1 SD, inter-staining PD-L1 scores ≤11% CV), and operator-independent (R2 >0.7 to >0.9 for each biomarker and 95% concordance in PD-L1 score-based interpretation between technicians). From whole slide images, a total of 11,932 individual regions of interest were analyzed across the cohort, resulting in >50 million spatially-resolved single cells which were summarized into cell population densities and PD-L1 scores. High densities of CD8+ (>64/mm2, p<0.0001), PD-1+ (>50/mm2, p<0.0001), and FOXP3+ (>30/mm2, p<0.0001) T cells were associated with longer overall survival (OS) irrespective of therapy and across all cancer types. PD-L1 metrics were not associated with OS (p=0.43). Compared to patients with low densities of CD8+ and PD-1+ cells, high densities of at least one of these cell types had better OS (Both high, HR: 0.49, 95% CI: 0.41 - 0.59; CD8+ high, HR: 0.63, (0.48 - 0.82); PD-1+ high, HR: 0.71, (0.54 - 0.93)). The results were consistent in the subset of patients (N=1572) who did not receive immunotherapy (IO). In patients who received IO therapy (N=451), only PD-1+ T-cell density associated with OS (HR: 0.48, (0.36 - 0.65)). To our knowledge, this is the first enterprise-level immune biomarker assay using multiplexed staining, digital imaging, and machine learning to be applied in a prospective manner to clinical specimens at scale. We found that select immune cell densities are prognostic across cancer types and therapies and demonstrated that quantification of multiple cell populations yields better prognostic power than single marker analyses. Citation Format: James Lindsay, Bijaya Sharma, Kristen D. Felt, Anita Giobbie-Hurder, Ian Dryg, Jason L. Weirather, Jennifer Altreuter, Tali Mazor, Priti Kumari, Joao V. Alessi, Ajit J. Nirmal, Michael P. Manos, Ananth R. Kumar, William Lotter, Ethan Cerami, Burce E. Johnson, Neil I. Lindeman, Lynette M. Sholl, Jonathan A. Nowak, Scott J. Rodig. ImmunoPROFILE: A prospective implementation of clinically validated, quantitative immune cell profiling test identifies tumor-infiltrating CD8+ and PD-1+ cell densities as prognostic biomarkers across a 2,023 patient pan-cancer cohort treated with different therapies. [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 5706.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
27秒前
123321完成签到 ,获得积分10
49秒前
隐形曼青应助可靠的寒风采纳,获得10
52秒前
陆上飞完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
树妖三三完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
2分钟前
可可爱爱毛毛完成签到 ,获得积分10
3分钟前
休斯顿完成签到,获得积分10
3分钟前
3分钟前
独特的香魔完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
4分钟前
luluzhu发布了新的文献求助10
4分钟前
luluzhu完成签到,获得积分10
4分钟前
4分钟前
5分钟前
Panther完成签到,获得积分10
5分钟前
沙海沉戈完成签到,获得积分0
6分钟前
研友_VZG7GZ应助Mannone采纳,获得10
6分钟前
华理附院孙文博完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
Mannone完成签到,获得积分10
6分钟前
Mannone发布了新的文献求助10
6分钟前
燕晓啸完成签到 ,获得积分0
7分钟前
zsmj23完成签到 ,获得积分0
7分钟前
今后应助mellow采纳,获得10
7分钟前
田様应助可靠的寒风采纳,获得10
7分钟前
8分钟前
8分钟前
8分钟前
mellow发布了新的文献求助10
8分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5105124
求助须知:如何正确求助?哪些是违规求助? 4315104
关于积分的说明 13444036
捐赠科研通 4143627
什么是DOI,文献DOI怎么找? 2270533
邀请新用户注册赠送积分活动 1273047
关于科研通互助平台的介绍 1210145