EG-Unet: Edge-Guided cascaded networks for automated frontal brain segmentation in MR images

计算机科学 人工智能 分割 模式识别(心理学) 特征(语言学) GSM演进的增强数据速率 图像分割 计算机视觉 边缘检测 图像处理 图像(数学) 语言学 哲学
作者
Xiufeng Zhang,Yansong Liu,Guo Sheng-jin,Zhao Song
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:158: 106891-106891 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.106891
摘要

Accurate segmentation of frontal lobe areas on magnetic resonance imaging (MRI) can assist in diagnosing and managing idiopathic normal-pressure hydrocephalus. However, frontal lobe segmentation is challenging due to the complexity of the degree and shape of damage and the ambiguity of the boundaries of frontal lobe sites. Therefore, to extract the rich edge information and feature representation of the frontal lobe, this paper designs an edge guidance (EG) module to enhance the representation of edge features. Accordingly, an edge-guided cascade network framework (EG-Net) is proposed to segment frontal lobe parts automatically. Two-dimensional MRI slice images are fed into the edge generation and segmentation networks. First, the edge generation network extracts the edge information from the input image. Then, the edge information is sent to the EG module to generate an edge attention map for feature representation enhancement. Meanwhile, multi-scale attentional convolution (MSA) is utilized in the feature coding stage of the segmentation network to obtain feature responses from different perceptual fields in the coding stage and enrich the spatial context information. Besides, the feature fusion module is employed to selectively aggregate the multi-scale features in the coding stage with the edge features output by the EG module. Finally, the two components are fused, and a decoder recovers the spatial information to generate the final prediction results. An extensive quantitative comparison is performed on a publicly available brain MRI dataset (MICCAI 2012) to evaluate the effectiveness of the proposed algorithm. The experimental results indicate that the proposed method achieves an average DICE score of 95.77% compared to some advanced methods, which is 4.96% better than the classical U-Net. The results demonstrate the potential of the proposed EG-Net in improving the accuracy of frontal edge pixel classification through edge guidance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
化学小白发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
蓝天应助ZJHYNL采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
lhy完成签到,获得积分10
5秒前
热情嘉懿发布了新的文献求助10
5秒前
小二郎应助Soyuu采纳,获得10
5秒前
ting完成签到,获得积分10
6秒前
6秒前
火星上香菇完成签到,获得积分10
6秒前
7秒前
husky完成签到,获得积分10
7秒前
7秒前
Ava应助Yiran采纳,获得10
8秒前
麦克完成签到,获得积分10
8秒前
smottom应助cj采纳,获得10
8秒前
9秒前
眯眯眼的松鼠完成签到,获得积分10
9秒前
芊芊墨完成签到,获得积分10
9秒前
风趣若烟发布了新的文献求助20
9秒前
9秒前
浅浅发布了新的文献求助10
10秒前
10秒前
husky发布了新的文献求助10
11秒前
CodeCraft应助undertaker采纳,获得10
11秒前
迷人的天抒应助热情嘉懿采纳,获得10
12秒前
香蕉觅云应助热情嘉懿采纳,获得10
12秒前
12秒前
科研通AI6.1应助lnww采纳,获得10
14秒前
七木发布了新的文献求助10
15秒前
瘦瘦紫文发布了新的文献求助10
15秒前
可爱的函函应助李浩采纳,获得10
17秒前
123完成签到,获得积分10
18秒前
可耐的凌旋完成签到 ,获得积分10
18秒前
18秒前
Hello应助飛666采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784591
求助须知:如何正确求助?哪些是违规求助? 5683318
关于积分的说明 15464856
捐赠科研通 4913776
什么是DOI,文献DOI怎么找? 2644858
邀请新用户注册赠送积分活动 1592804
关于科研通互助平台的介绍 1547207