EG-Unet: Edge-Guided cascaded networks for automated frontal brain segmentation in MR images

计算机科学 人工智能 分割 模式识别(心理学) 特征(语言学) GSM演进的增强数据速率 图像分割 计算机视觉 边缘检测 图像处理 图像(数学) 哲学 语言学
作者
Xiufeng Zhang,Yansong Liu,Guo Sheng-jin,Zhao Song
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:158: 106891-106891 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.106891
摘要

Accurate segmentation of frontal lobe areas on magnetic resonance imaging (MRI) can assist in diagnosing and managing idiopathic normal-pressure hydrocephalus. However, frontal lobe segmentation is challenging due to the complexity of the degree and shape of damage and the ambiguity of the boundaries of frontal lobe sites. Therefore, to extract the rich edge information and feature representation of the frontal lobe, this paper designs an edge guidance (EG) module to enhance the representation of edge features. Accordingly, an edge-guided cascade network framework (EG-Net) is proposed to segment frontal lobe parts automatically. Two-dimensional MRI slice images are fed into the edge generation and segmentation networks. First, the edge generation network extracts the edge information from the input image. Then, the edge information is sent to the EG module to generate an edge attention map for feature representation enhancement. Meanwhile, multi-scale attentional convolution (MSA) is utilized in the feature coding stage of the segmentation network to obtain feature responses from different perceptual fields in the coding stage and enrich the spatial context information. Besides, the feature fusion module is employed to selectively aggregate the multi-scale features in the coding stage with the edge features output by the EG module. Finally, the two components are fused, and a decoder recovers the spatial information to generate the final prediction results. An extensive quantitative comparison is performed on a publicly available brain MRI dataset (MICCAI 2012) to evaluate the effectiveness of the proposed algorithm. The experimental results indicate that the proposed method achieves an average DICE score of 95.77% compared to some advanced methods, which is 4.96% better than the classical U-Net. The results demonstrate the potential of the proposed EG-Net in improving the accuracy of frontal edge pixel classification through edge guidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助独见晓焉采纳,获得10
刚刚
1秒前
赫若魔发布了新的文献求助10
2秒前
2秒前
Lee2000完成签到,获得积分20
3秒前
ercong_604完成签到,获得积分10
3秒前
4秒前
Xixi_yuan完成签到,获得积分10
5秒前
lit完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
yelv123发布了新的文献求助10
9秒前
碧赴发布了新的文献求助10
9秒前
复杂给复杂的求助进行了留言
9秒前
傲慢与偏见zz应助彩虹采纳,获得10
10秒前
Josie发布了新的文献求助20
10秒前
13秒前
搞怪的小猫咪完成签到,获得积分20
13秒前
serein完成签到,获得积分20
14秒前
Jasper应助七安采纳,获得10
14秒前
14秒前
愫问发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
万能图书馆应助einuo采纳,获得10
17秒前
甜的瓜发布了新的文献求助10
17秒前
17秒前
18秒前
19秒前
开放的扬完成签到 ,获得积分10
19秒前
36456657应助赫若魔采纳,获得10
19秒前
lit发布了新的文献求助10
21秒前
21秒前
21秒前
丹丹发布了新的文献求助10
21秒前
pc发布了新的文献求助10
21秒前
zhy发布了新的文献求助10
22秒前
lianliyou应助www采纳,获得20
23秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3218909
求助须知:如何正确求助?哪些是违规求助? 2867929
关于积分的说明 8158830
捐赠科研通 2534996
什么是DOI,文献DOI怎么找? 1367373
科研通“疑难数据库(出版商)”最低求助积分说明 645033
邀请新用户注册赠送积分活动 618223