清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

EG-Unet: Edge-Guided cascaded networks for automated frontal brain segmentation in MR images

计算机科学 人工智能 分割 模式识别(心理学) 特征(语言学) GSM演进的增强数据速率 图像分割 计算机视觉 边缘检测 图像处理 图像(数学) 语言学 哲学
作者
Xiufeng Zhang,Yansong Liu,Guo Sheng-jin,Zhao Song
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:158: 106891-106891 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.106891
摘要

Accurate segmentation of frontal lobe areas on magnetic resonance imaging (MRI) can assist in diagnosing and managing idiopathic normal-pressure hydrocephalus. However, frontal lobe segmentation is challenging due to the complexity of the degree and shape of damage and the ambiguity of the boundaries of frontal lobe sites. Therefore, to extract the rich edge information and feature representation of the frontal lobe, this paper designs an edge guidance (EG) module to enhance the representation of edge features. Accordingly, an edge-guided cascade network framework (EG-Net) is proposed to segment frontal lobe parts automatically. Two-dimensional MRI slice images are fed into the edge generation and segmentation networks. First, the edge generation network extracts the edge information from the input image. Then, the edge information is sent to the EG module to generate an edge attention map for feature representation enhancement. Meanwhile, multi-scale attentional convolution (MSA) is utilized in the feature coding stage of the segmentation network to obtain feature responses from different perceptual fields in the coding stage and enrich the spatial context information. Besides, the feature fusion module is employed to selectively aggregate the multi-scale features in the coding stage with the edge features output by the EG module. Finally, the two components are fused, and a decoder recovers the spatial information to generate the final prediction results. An extensive quantitative comparison is performed on a publicly available brain MRI dataset (MICCAI 2012) to evaluate the effectiveness of the proposed algorithm. The experimental results indicate that the proposed method achieves an average DICE score of 95.77% compared to some advanced methods, which is 4.96% better than the classical U-Net. The results demonstrate the potential of the proposed EG-Net in improving the accuracy of frontal edge pixel classification through edge guidance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qzh006完成签到,获得积分10
27秒前
碗在水中央完成签到 ,获得积分10
27秒前
34秒前
1分钟前
元宝麻麻发布了新的文献求助10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
默默问芙完成签到,获得积分10
1分钟前
俊逸的盛男完成签到 ,获得积分10
1分钟前
SciGPT应助元宝麻麻采纳,获得10
1分钟前
2分钟前
活力的妙之完成签到 ,获得积分10
2分钟前
zzgpku完成签到,获得积分0
2分钟前
懒得起名字完成签到 ,获得积分10
2分钟前
共享精神应助尊敬的凌晴采纳,获得10
2分钟前
sevenhill完成签到 ,获得积分0
2分钟前
浚稚完成签到 ,获得积分10
2分钟前
Upupgrowth完成签到 ,获得积分10
2分钟前
年轻千愁完成签到 ,获得积分10
2分钟前
2分钟前
Weilu完成签到 ,获得积分10
2分钟前
2分钟前
naki完成签到,获得积分10
2分钟前
HCCha完成签到,获得积分10
2分钟前
胡国伦完成签到 ,获得积分10
2分钟前
元宝麻麻完成签到,获得积分10
3分钟前
似水流年完成签到 ,获得积分10
3分钟前
今我来思完成签到 ,获得积分10
3分钟前
小蘑菇应助neptuniar采纳,获得10
4分钟前
甜美的觅荷完成签到,获得积分10
4分钟前
尊敬的凌晴完成签到 ,获得积分10
4分钟前
4分钟前
愤怒的念蕾完成签到,获得积分10
4分钟前
cgs完成签到 ,获得积分10
4分钟前
自由的雅旋完成签到 ,获得积分10
4分钟前
练得身形似鹤形完成签到 ,获得积分10
4分钟前
悠树里完成签到,获得积分10
4分钟前
gwbk完成签到,获得积分10
5分钟前
隐形曼青应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612005
求助须知:如何正确求助?哪些是违规求助? 4696171
关于积分的说明 14890481
捐赠科研通 4730707
什么是DOI,文献DOI怎么找? 2546088
邀请新用户注册赠送积分活动 1510419
关于科研通互助平台的介绍 1473299