EG-Unet: Edge-Guided cascaded networks for automated frontal brain segmentation in MR images

计算机科学 人工智能 分割 模式识别(心理学) 特征(语言学) GSM演进的增强数据速率 图像分割 计算机视觉 边缘检测 图像处理 图像(数学) 语言学 哲学
作者
Xiufeng Zhang,Yansong Liu,Guo Sheng-jin,Zhao Song
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:158: 106891-106891 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.106891
摘要

Accurate segmentation of frontal lobe areas on magnetic resonance imaging (MRI) can assist in diagnosing and managing idiopathic normal-pressure hydrocephalus. However, frontal lobe segmentation is challenging due to the complexity of the degree and shape of damage and the ambiguity of the boundaries of frontal lobe sites. Therefore, to extract the rich edge information and feature representation of the frontal lobe, this paper designs an edge guidance (EG) module to enhance the representation of edge features. Accordingly, an edge-guided cascade network framework (EG-Net) is proposed to segment frontal lobe parts automatically. Two-dimensional MRI slice images are fed into the edge generation and segmentation networks. First, the edge generation network extracts the edge information from the input image. Then, the edge information is sent to the EG module to generate an edge attention map for feature representation enhancement. Meanwhile, multi-scale attentional convolution (MSA) is utilized in the feature coding stage of the segmentation network to obtain feature responses from different perceptual fields in the coding stage and enrich the spatial context information. Besides, the feature fusion module is employed to selectively aggregate the multi-scale features in the coding stage with the edge features output by the EG module. Finally, the two components are fused, and a decoder recovers the spatial information to generate the final prediction results. An extensive quantitative comparison is performed on a publicly available brain MRI dataset (MICCAI 2012) to evaluate the effectiveness of the proposed algorithm. The experimental results indicate that the proposed method achieves an average DICE score of 95.77% compared to some advanced methods, which is 4.96% better than the classical U-Net. The results demonstrate the potential of the proposed EG-Net in improving the accuracy of frontal edge pixel classification through edge guidance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
obito完成签到,获得积分20
刚刚
Owen应助yu采纳,获得10
1秒前
正直千兰完成签到,获得积分10
1秒前
满眼星辰发布了新的文献求助10
2秒前
gean发布了新的文献求助10
3秒前
柯一一应助艺馨采纳,获得10
3秒前
Lucas应助duoyi采纳,获得10
4秒前
周浩宇完成签到,获得积分10
5秒前
Jasper应助开心就吃猕猴桃采纳,获得10
5秒前
星辰大海应助June采纳,获得20
5秒前
所所应助jiulin采纳,获得10
6秒前
阿七完成签到,获得积分10
7秒前
NexusExplorer应助半夏采纳,获得10
7秒前
整化学发布了新的文献求助30
8秒前
知性的不凡完成签到,获得积分10
9秒前
9秒前
huai应助zzz采纳,获得10
10秒前
彭于晏应助陈隆采纳,获得10
10秒前
Cookiee发布了新的文献求助10
10秒前
NicheFactor完成签到,获得积分10
11秒前
ljdpsy完成签到,获得积分20
12秒前
雪山飞龙发布了新的文献求助10
12秒前
鸣笛应助科研通管家采纳,获得30
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
扎心应助科研通管家采纳,获得10
13秒前
汉堡包应助科研通管家采纳,获得10
13秒前
竹筏过海应助科研通管家采纳,获得30
13秒前
打打应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
12138的9527完成签到,获得积分10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
完美世界应助科研通管家采纳,获得10
14秒前
完美世界应助科研通管家采纳,获得30
14秒前
打工肥仔应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
圆锥香蕉应助科研通管家采纳,获得20
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511917
关于积分的说明 11160753
捐赠科研通 3246652
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403