EG-Unet: Edge-Guided cascaded networks for automated frontal brain segmentation in MR images

计算机科学 人工智能 分割 模式识别(心理学) 特征(语言学) GSM演进的增强数据速率 图像分割 计算机视觉 边缘检测 图像处理 图像(数学) 语言学 哲学
作者
Xiufeng Zhang,Yansong Liu,Guo Sheng-jin,Zhao Song
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:158: 106891-106891 被引量:4
标识
DOI:10.1016/j.compbiomed.2023.106891
摘要

Accurate segmentation of frontal lobe areas on magnetic resonance imaging (MRI) can assist in diagnosing and managing idiopathic normal-pressure hydrocephalus. However, frontal lobe segmentation is challenging due to the complexity of the degree and shape of damage and the ambiguity of the boundaries of frontal lobe sites. Therefore, to extract the rich edge information and feature representation of the frontal lobe, this paper designs an edge guidance (EG) module to enhance the representation of edge features. Accordingly, an edge-guided cascade network framework (EG-Net) is proposed to segment frontal lobe parts automatically. Two-dimensional MRI slice images are fed into the edge generation and segmentation networks. First, the edge generation network extracts the edge information from the input image. Then, the edge information is sent to the EG module to generate an edge attention map for feature representation enhancement. Meanwhile, multi-scale attentional convolution (MSA) is utilized in the feature coding stage of the segmentation network to obtain feature responses from different perceptual fields in the coding stage and enrich the spatial context information. Besides, the feature fusion module is employed to selectively aggregate the multi-scale features in the coding stage with the edge features output by the EG module. Finally, the two components are fused, and a decoder recovers the spatial information to generate the final prediction results. An extensive quantitative comparison is performed on a publicly available brain MRI dataset (MICCAI 2012) to evaluate the effectiveness of the proposed algorithm. The experimental results indicate that the proposed method achieves an average DICE score of 95.77% compared to some advanced methods, which is 4.96% better than the classical U-Net. The results demonstrate the potential of the proposed EG-Net in improving the accuracy of frontal edge pixel classification through edge guidance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单的翠曼完成签到 ,获得积分10
2秒前
2秒前
罗马没有马完成签到 ,获得积分10
3秒前
4秒前
5秒前
7秒前
7秒前
8秒前
扶摇完成签到 ,获得积分10
9秒前
bopop发布了新的文献求助10
9秒前
剑K完成签到,获得积分10
9秒前
Shirley发布了新的文献求助10
9秒前
潇潇雨歇发布了新的文献求助200
10秒前
量子星尘发布了新的文献求助10
13秒前
juzi发布了新的文献求助20
13秒前
JamesPei应助Betty采纳,获得10
13秒前
fang完成签到,获得积分10
13秒前
dreamvssnow完成签到 ,获得积分10
14秒前
15秒前
16秒前
庚桑楚完成签到,获得积分10
19秒前
嘻嘻完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
20秒前
随随完成签到 ,获得积分10
20秒前
bopop完成签到,获得积分10
21秒前
眯眯眼的代容完成签到,获得积分10
21秒前
韩楠完成签到 ,获得积分10
21秒前
NexusExplorer应助天道酬勤采纳,获得30
22秒前
23秒前
兰是一个信仰完成签到,获得积分10
25秒前
orixero应助Vanessa采纳,获得10
26秒前
27秒前
三金完成签到,获得积分20
27秒前
健忘洋葱完成签到 ,获得积分10
28秒前
精明凡双完成签到,获得积分0
28秒前
1212发布了新的文献求助10
29秒前
多情雨灵发布了新的文献求助80
30秒前
三金发布了新的文献求助30
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742127
求助须知:如何正确求助?哪些是违规求助? 5406259
关于积分的说明 15344129
捐赠科研通 4883566
什么是DOI,文献DOI怎么找? 2625108
邀请新用户注册赠送积分活动 1573970
关于科研通互助平台的介绍 1530929