Electrical Impedance Tomography Image Reconstruction With Attention-Based Deep Convolutional Neural Network

卷积神经网络 电阻抗断层成像 深度学习 计算机科学 人工智能 迭代重建 特征(语言学) 残余物 反问题 编码器 算法 模式识别(心理学) 断层摄影术 数学 物理 光学 哲学 数学分析 操作系统 语言学
作者
Zichen Wang,Xinyu Zhang,Rong Fu,Xiaoyan Chen,Xiaoyan Chen,Huaxiang Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-18 被引量:3
标识
DOI:10.1109/tim.2023.3265108
摘要

Electrical impedance tomography (EIT) is a promising functional and structural imaging method in process tomography. However, due to the ’soft-field’ nature and the high dependence on the prior information, it often suffers serious artifacts in quantitative analysis. Most recently, EIT image quality has improved significantly because of the state-of-the-art deep learning-based models in the aspect of solving the inverse problem, especially fully convolutional networks (FCN) and V-Net variants. Despite their success, these deep convolutional networks (CNNs) have two limitations: (1) The long-range information transition is frequently lost and the reverse gradient often disappears in deep CNNs; (2) Some novel skip connections, such as residual and dense connections, often occupy substantial computational resources. To overcome these two limitations, we propose V 2 A-Net, a new neural architecture based on redesigned feature transited connections by the terms of (1) A pre-reconstructor based on the iterative Newton-Raphson method, which maps the nonlinear function between the measurements and the initial images, (2) Dual cascaded V-Net are combined, which play the role of an encoder and a decoder, respectively, (3) A new parallel attention mechanism via channel attention and coordinate attention to learn the conductivity distributions and boundary-shaped feature separately, and (4) the light-weight skip connections reduce the computational resources (or accelerate the inference speed) of EIT imaging. The V 2 A-Net is evaluated by using the multi-phase flow industrial applications, and the results demonstrate that (1) V 2 A-Net has better performance in shape reconstruction with sharp ’corner’, (2) V 2 A-Net could reconstruct the model accurately where it has some low-contrast conductivity distributions, (3) V 2 A-Net enhances the quality of interfaces with the stratified flow, and (4) the pruned V 2 A-Net achieves significant speedup compared with the VDD-Net or V 2 DNet. The analyses show that the average relative error is 0.05, the average correlation coefficient is 0.92, the average structural similarity is 0.92 on the testing datasets. In addition, the average relative cover ratio is 0.97 and the average relative contrast ratio is 0.98 on the testing datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jin发布了新的文献求助10
刚刚
shizizuo发布了新的文献求助10
1秒前
1秒前
小马甲应助fdvs采纳,获得10
2秒前
4秒前
yun完成签到 ,获得积分10
4秒前
永梦发布了新的文献求助10
4秒前
老年学术废物完成签到 ,获得积分10
5秒前
5秒前
xieqq00发布了新的文献求助10
6秒前
一只科研pig完成签到 ,获得积分10
6秒前
充电宝应助orechan采纳,获得10
7秒前
知犯何逆发布了新的文献求助10
7秒前
9秒前
大模型应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
上官若男应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
研究生end应助科研通管家采纳,获得10
9秒前
lft361应助自觉的向薇采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
orixero应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得30
9秒前
田様应助科研通管家采纳,获得10
9秒前
科研通AI5应助张先生采纳,获得10
9秒前
共享精神应助科研通管家采纳,获得10
9秒前
研究生end应助科研通管家采纳,获得10
9秒前
Tsuki完成签到 ,获得积分10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
10秒前
10秒前
俊逸傲柏完成签到,获得积分10
10秒前
zhaoqing完成签到,获得积分10
10秒前
sxkoala应助Rinamamiya采纳,获得50
10秒前
10秒前
斯文败类应助arton采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Thomas Hobbes' Mechanical Conception of Nature 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5112322
求助须知:如何正确求助?哪些是违规求助? 4320138
关于积分的说明 13461020
捐赠科研通 4151155
什么是DOI,文献DOI怎么找? 2274630
邀请新用户注册赠送积分活动 1276485
关于科研通互助平台的介绍 1214649