Electrical Impedance Tomography Image Reconstruction With Attention-Based Deep Convolutional Neural Network

卷积神经网络 电阻抗断层成像 深度学习 计算机科学 人工智能 迭代重建 特征(语言学) 残余物 反问题 编码器 算法 模式识别(心理学) 断层摄影术 数学 物理 光学 哲学 数学分析 操作系统 语言学
作者
Zichen Wang,Xinyu Zhang,Rong Fu,Xiaoyan Chen,Xiaoyan Chen,Huaxiang Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-18 被引量:3
标识
DOI:10.1109/tim.2023.3265108
摘要

Electrical impedance tomography (EIT) is a promising functional and structural imaging method in process tomography. However, due to the ’soft-field’ nature and the high dependence on the prior information, it often suffers serious artifacts in quantitative analysis. Most recently, EIT image quality has improved significantly because of the state-of-the-art deep learning-based models in the aspect of solving the inverse problem, especially fully convolutional networks (FCN) and V-Net variants. Despite their success, these deep convolutional networks (CNNs) have two limitations: (1) The long-range information transition is frequently lost and the reverse gradient often disappears in deep CNNs; (2) Some novel skip connections, such as residual and dense connections, often occupy substantial computational resources. To overcome these two limitations, we propose V 2 A-Net, a new neural architecture based on redesigned feature transited connections by the terms of (1) A pre-reconstructor based on the iterative Newton-Raphson method, which maps the nonlinear function between the measurements and the initial images, (2) Dual cascaded V-Net are combined, which play the role of an encoder and a decoder, respectively, (3) A new parallel attention mechanism via channel attention and coordinate attention to learn the conductivity distributions and boundary-shaped feature separately, and (4) the light-weight skip connections reduce the computational resources (or accelerate the inference speed) of EIT imaging. The V 2 A-Net is evaluated by using the multi-phase flow industrial applications, and the results demonstrate that (1) V 2 A-Net has better performance in shape reconstruction with sharp ’corner’, (2) V 2 A-Net could reconstruct the model accurately where it has some low-contrast conductivity distributions, (3) V 2 A-Net enhances the quality of interfaces with the stratified flow, and (4) the pruned V 2 A-Net achieves significant speedup compared with the VDD-Net or V 2 DNet. The analyses show that the average relative error is 0.05, the average correlation coefficient is 0.92, the average structural similarity is 0.92 on the testing datasets. In addition, the average relative cover ratio is 0.97 and the average relative contrast ratio is 0.98 on the testing datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辣么卄完成签到,获得积分10
刚刚
ZZZ发布了新的文献求助10
1秒前
2秒前
冷傲的太英完成签到 ,获得积分10
2秒前
嘿嘿发布了新的文献求助10
3秒前
大胆的时光完成签到 ,获得积分10
4秒前
joleisalau发布了新的文献求助10
5秒前
CHL完成签到,获得积分10
7秒前
10秒前
可爱的函函应助12121采纳,获得10
10秒前
Zzx完成签到,获得积分10
18秒前
hannuannuan完成签到 ,获得积分10
22秒前
辣么卄发布了新的文献求助10
22秒前
SciGPT应助yxf采纳,获得10
23秒前
illuminate发布了新的文献求助20
23秒前
坚强的安柏完成签到,获得积分10
23秒前
哆来咪完成签到,获得积分10
24秒前
打打应助梧桐采纳,获得10
26秒前
26秒前
潘润朗完成签到,获得积分10
26秒前
墨兮完成签到 ,获得积分10
27秒前
汉堡包应助echo采纳,获得10
28秒前
28秒前
30秒前
31秒前
夏夏完成签到 ,获得积分10
32秒前
整齐的未来完成签到 ,获得积分10
33秒前
joleisalau完成签到,获得积分10
33秒前
35秒前
科研通AI6应助YY采纳,获得10
36秒前
Hello应助YY采纳,获得10
36秒前
万能图书馆应助YY采纳,获得10
36秒前
yxf发布了新的文献求助10
36秒前
困告完成签到,获得积分10
39秒前
英吉利25发布了新的文献求助20
40秒前
慵懒跑不动完成签到,获得积分20
40秒前
等意送汝发布了新的文献求助10
41秒前
跳跃的半双完成签到,获得积分10
41秒前
43秒前
科研通AI6应助菩提石头采纳,获得10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560221
求助须知:如何正确求助?哪些是违规求助? 4645390
关于积分的说明 14675061
捐赠科研通 4586534
什么是DOI,文献DOI怎么找? 2516468
邀请新用户注册赠送积分活动 1490087
关于科研通互助平台的介绍 1460900