Electrical Impedance Tomography Image Reconstruction With Attention-Based Deep Convolutional Neural Network

卷积神经网络 电阻抗断层成像 深度学习 计算机科学 人工智能 迭代重建 特征(语言学) 残余物 反问题 编码器 算法 模式识别(心理学) 断层摄影术 数学 物理 光学 数学分析 语言学 哲学 操作系统
作者
Zichen Wang,Xinyu Zhang,Rong Fu,Xiaoyan Chen,Xiaoyan Chen,Huaxiang Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-18 被引量:3
标识
DOI:10.1109/tim.2023.3265108
摘要

Electrical impedance tomography (EIT) is a promising functional and structural imaging method in process tomography. However, due to the ’soft-field’ nature and the high dependence on the prior information, it often suffers serious artifacts in quantitative analysis. Most recently, EIT image quality has improved significantly because of the state-of-the-art deep learning-based models in the aspect of solving the inverse problem, especially fully convolutional networks (FCN) and V-Net variants. Despite their success, these deep convolutional networks (CNNs) have two limitations: (1) The long-range information transition is frequently lost and the reverse gradient often disappears in deep CNNs; (2) Some novel skip connections, such as residual and dense connections, often occupy substantial computational resources. To overcome these two limitations, we propose V 2 A-Net, a new neural architecture based on redesigned feature transited connections by the terms of (1) A pre-reconstructor based on the iterative Newton-Raphson method, which maps the nonlinear function between the measurements and the initial images, (2) Dual cascaded V-Net are combined, which play the role of an encoder and a decoder, respectively, (3) A new parallel attention mechanism via channel attention and coordinate attention to learn the conductivity distributions and boundary-shaped feature separately, and (4) the light-weight skip connections reduce the computational resources (or accelerate the inference speed) of EIT imaging. The V 2 A-Net is evaluated by using the multi-phase flow industrial applications, and the results demonstrate that (1) V 2 A-Net has better performance in shape reconstruction with sharp ’corner’, (2) V 2 A-Net could reconstruct the model accurately where it has some low-contrast conductivity distributions, (3) V 2 A-Net enhances the quality of interfaces with the stratified flow, and (4) the pruned V 2 A-Net achieves significant speedup compared with the VDD-Net or V 2 DNet. The analyses show that the average relative error is 0.05, the average correlation coefficient is 0.92, the average structural similarity is 0.92 on the testing datasets. In addition, the average relative cover ratio is 0.97 and the average relative contrast ratio is 0.98 on the testing datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GGGGGGGGGG发布了新的文献求助10
刚刚
刚刚
打打应助hhh采纳,获得10
1秒前
抓恐龙关注了科研通微信公众号
1秒前
碳点godfather完成签到,获得积分10
1秒前
ren完成签到,获得积分20
1秒前
我想把这玩意儿染成绿的完成签到 ,获得积分10
2秒前
TG_FY完成签到,获得积分10
2秒前
2秒前
hhh完成签到,获得积分10
2秒前
JamesPei应助诗轩采纳,获得10
3秒前
TT完成签到,获得积分10
4秒前
reck发布了新的文献求助10
4秒前
5秒前
DK发布了新的文献求助10
5秒前
英俊的铭应助ren采纳,获得10
5秒前
圈圈发布了新的文献求助10
5秒前
乐乱完成签到 ,获得积分10
6秒前
415484112完成签到,获得积分10
7秒前
yinyi发布了新的文献求助10
7秒前
7秒前
赵一丁完成签到,获得积分10
8秒前
成就绮琴完成签到 ,获得积分10
8秒前
Chen完成签到,获得积分10
8秒前
huanfid完成签到 ,获得积分10
8秒前
8秒前
8秒前
9秒前
Stitch完成签到 ,获得积分10
9秒前
9秒前
眯眯眼的冷珍完成签到,获得积分10
9秒前
bjyx完成签到,获得积分10
9秒前
reck完成签到,获得积分10
10秒前
pharmstudent发布了新的文献求助30
10秒前
小田完成签到,获得积分10
10秒前
小喵发布了新的文献求助10
11秒前
FashionBoy应助毛毛哦啊采纳,获得10
11秒前
Lucas应助Chen采纳,获得10
12秒前
强健的蚂蚁完成签到,获得积分20
12秒前
小宇发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672