Electrical Impedance Tomography Image Reconstruction With Attention-Based Deep Convolutional Neural Network

卷积神经网络 电阻抗断层成像 深度学习 计算机科学 人工智能 迭代重建 特征(语言学) 残余物 反问题 编码器 算法 模式识别(心理学) 断层摄影术 数学 物理 光学 哲学 数学分析 操作系统 语言学
作者
Zichen Wang,Xinyu Zhang,Rong Fu,Xiaoyan Chen,Xiaoyan Chen,Huaxiang Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-18 被引量:3
标识
DOI:10.1109/tim.2023.3265108
摘要

Electrical impedance tomography (EIT) is a promising functional and structural imaging method in process tomography. However, due to the ’soft-field’ nature and the high dependence on the prior information, it often suffers serious artifacts in quantitative analysis. Most recently, EIT image quality has improved significantly because of the state-of-the-art deep learning-based models in the aspect of solving the inverse problem, especially fully convolutional networks (FCN) and V-Net variants. Despite their success, these deep convolutional networks (CNNs) have two limitations: (1) The long-range information transition is frequently lost and the reverse gradient often disappears in deep CNNs; (2) Some novel skip connections, such as residual and dense connections, often occupy substantial computational resources. To overcome these two limitations, we propose V 2 A-Net, a new neural architecture based on redesigned feature transited connections by the terms of (1) A pre-reconstructor based on the iterative Newton-Raphson method, which maps the nonlinear function between the measurements and the initial images, (2) Dual cascaded V-Net are combined, which play the role of an encoder and a decoder, respectively, (3) A new parallel attention mechanism via channel attention and coordinate attention to learn the conductivity distributions and boundary-shaped feature separately, and (4) the light-weight skip connections reduce the computational resources (or accelerate the inference speed) of EIT imaging. The V 2 A-Net is evaluated by using the multi-phase flow industrial applications, and the results demonstrate that (1) V 2 A-Net has better performance in shape reconstruction with sharp ’corner’, (2) V 2 A-Net could reconstruct the model accurately where it has some low-contrast conductivity distributions, (3) V 2 A-Net enhances the quality of interfaces with the stratified flow, and (4) the pruned V 2 A-Net achieves significant speedup compared with the VDD-Net or V 2 DNet. The analyses show that the average relative error is 0.05, the average correlation coefficient is 0.92, the average structural similarity is 0.92 on the testing datasets. In addition, the average relative cover ratio is 0.97 and the average relative contrast ratio is 0.98 on the testing datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bzz发布了新的文献求助10
刚刚
2秒前
闪闪秀发关注了科研通微信公众号
3秒前
TTT发布了新的文献求助10
4秒前
LL完成签到 ,获得积分10
5秒前
Dxy-TOFA完成签到,获得积分10
5秒前
顾矜应助宋禹狄采纳,获得10
5秒前
6秒前
YY土豆侠完成签到,获得积分10
6秒前
6秒前
NexusExplorer应助故事细腻采纳,获得10
7秒前
7秒前
8秒前
感动芷珊完成签到 ,获得积分10
8秒前
Hale完成签到,获得积分0
8秒前
9秒前
疏竹完成签到,获得积分10
9秒前
11秒前
大蛋发布了新的文献求助10
11秒前
11秒前
无限桐发布了新的文献求助10
11秒前
yinhe发布了新的文献求助10
11秒前
wang发布了新的文献求助10
12秒前
wiee完成签到,获得积分10
12秒前
尔安完成签到,获得积分10
14秒前
共享精神应助archer01采纳,获得10
15秒前
甘sir发布了新的文献求助10
15秒前
Cloud9发布了新的文献求助10
15秒前
远志发布了新的文献求助10
15秒前
Paradox发布了新的文献求助10
16秒前
小情思绪发布了新的文献求助10
16秒前
18秒前
18秒前
忧心的幻然完成签到,获得积分10
19秒前
19秒前
20秒前
Jackylee完成签到,获得积分10
20秒前
20秒前
爱太累爱的不自由完成签到 ,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5353557
求助须知:如何正确求助?哪些是违规求助? 4486174
关于积分的说明 13965469
捐赠科研通 4386453
什么是DOI,文献DOI怎么找? 2409927
邀请新用户注册赠送积分活动 1402242
关于科研通互助平台的介绍 1376030