Electrical Impedance Tomography Image Reconstruction With Attention-Based Deep Convolutional Neural Network

卷积神经网络 电阻抗断层成像 深度学习 计算机科学 人工智能 迭代重建 特征(语言学) 残余物 反问题 编码器 算法 模式识别(心理学) 断层摄影术 数学 物理 光学 数学分析 语言学 哲学 操作系统
作者
Zichen Wang,Xinyu Zhang,Rong Fu,Xiaoyan Chen,Xiaoyan Chen,Huaxiang Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-18 被引量:3
标识
DOI:10.1109/tim.2023.3265108
摘要

Electrical impedance tomography (EIT) is a promising functional and structural imaging method in process tomography. However, due to the ’soft-field’ nature and the high dependence on the prior information, it often suffers serious artifacts in quantitative analysis. Most recently, EIT image quality has improved significantly because of the state-of-the-art deep learning-based models in the aspect of solving the inverse problem, especially fully convolutional networks (FCN) and V-Net variants. Despite their success, these deep convolutional networks (CNNs) have two limitations: (1) The long-range information transition is frequently lost and the reverse gradient often disappears in deep CNNs; (2) Some novel skip connections, such as residual and dense connections, often occupy substantial computational resources. To overcome these two limitations, we propose V 2 A-Net, a new neural architecture based on redesigned feature transited connections by the terms of (1) A pre-reconstructor based on the iterative Newton-Raphson method, which maps the nonlinear function between the measurements and the initial images, (2) Dual cascaded V-Net are combined, which play the role of an encoder and a decoder, respectively, (3) A new parallel attention mechanism via channel attention and coordinate attention to learn the conductivity distributions and boundary-shaped feature separately, and (4) the light-weight skip connections reduce the computational resources (or accelerate the inference speed) of EIT imaging. The V 2 A-Net is evaluated by using the multi-phase flow industrial applications, and the results demonstrate that (1) V 2 A-Net has better performance in shape reconstruction with sharp ’corner’, (2) V 2 A-Net could reconstruct the model accurately where it has some low-contrast conductivity distributions, (3) V 2 A-Net enhances the quality of interfaces with the stratified flow, and (4) the pruned V 2 A-Net achieves significant speedup compared with the VDD-Net or V 2 DNet. The analyses show that the average relative error is 0.05, the average correlation coefficient is 0.92, the average structural similarity is 0.92 on the testing datasets. In addition, the average relative cover ratio is 0.97 and the average relative contrast ratio is 0.98 on the testing datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hudson完成签到,获得积分10
刚刚
斯丹康完成签到,获得积分10
刚刚
su发布了新的文献求助10
刚刚
猪猪hero发布了新的文献求助10
刚刚
1秒前
风语完成签到,获得积分10
2秒前
2秒前
哄哄应助稳重的孤兰采纳,获得10
2秒前
2秒前
galaxy发布了新的文献求助10
3秒前
3秒前
火星上的糖豆完成签到,获得积分10
3秒前
3秒前
满满完成签到,获得积分20
3秒前
脑洞疼应助OO采纳,获得10
4秒前
jennie完成签到 ,获得积分10
5秒前
顾矜应助lee采纳,获得10
5秒前
Noel完成签到,获得积分10
6秒前
猪猪hero发布了新的文献求助10
6秒前
輓楓完成签到,获得积分10
7秒前
易昕发布了新的文献求助10
7秒前
Ava应助fufu采纳,获得10
8秒前
姚懿磊发布了新的文献求助10
8秒前
9秒前
米糊发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
填充物完成签到 ,获得积分10
13秒前
14秒前
抹茶泡泡完成签到 ,获得积分10
15秒前
15秒前
16秒前
16秒前
虫它完成签到,获得积分10
17秒前
爆米花应助dongbei采纳,获得10
17秒前
茜茜哎科研应助是希希啊a采纳,获得10
18秒前
感动清炎完成签到,获得积分10
18秒前
18秒前
佳哥闯天下完成签到,获得积分20
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951249
求助须知:如何正确求助?哪些是违规求助? 3496668
关于积分的说明 11083529
捐赠科研通 3227087
什么是DOI,文献DOI怎么找? 1784228
邀请新用户注册赠送积分活动 868269
科研通“疑难数据库(出版商)”最低求助积分说明 801095