已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Electrical Impedance Tomography Image Reconstruction With Attention-Based Deep Convolutional Neural Network

卷积神经网络 电阻抗断层成像 深度学习 计算机科学 人工智能 迭代重建 特征(语言学) 残余物 反问题 编码器 算法 模式识别(心理学) 断层摄影术 数学 物理 光学 哲学 数学分析 操作系统 语言学
作者
Zichen Wang,Xinyu Zhang,Rong Fu,Xiaoyan Chen,Xiaoyan Chen,Huaxiang Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-18 被引量:3
标识
DOI:10.1109/tim.2023.3265108
摘要

Electrical impedance tomography (EIT) is a promising functional and structural imaging method in process tomography. However, due to the ’soft-field’ nature and the high dependence on the prior information, it often suffers serious artifacts in quantitative analysis. Most recently, EIT image quality has improved significantly because of the state-of-the-art deep learning-based models in the aspect of solving the inverse problem, especially fully convolutional networks (FCN) and V-Net variants. Despite their success, these deep convolutional networks (CNNs) have two limitations: (1) The long-range information transition is frequently lost and the reverse gradient often disappears in deep CNNs; (2) Some novel skip connections, such as residual and dense connections, often occupy substantial computational resources. To overcome these two limitations, we propose V 2 A-Net, a new neural architecture based on redesigned feature transited connections by the terms of (1) A pre-reconstructor based on the iterative Newton-Raphson method, which maps the nonlinear function between the measurements and the initial images, (2) Dual cascaded V-Net are combined, which play the role of an encoder and a decoder, respectively, (3) A new parallel attention mechanism via channel attention and coordinate attention to learn the conductivity distributions and boundary-shaped feature separately, and (4) the light-weight skip connections reduce the computational resources (or accelerate the inference speed) of EIT imaging. The V 2 A-Net is evaluated by using the multi-phase flow industrial applications, and the results demonstrate that (1) V 2 A-Net has better performance in shape reconstruction with sharp ’corner’, (2) V 2 A-Net could reconstruct the model accurately where it has some low-contrast conductivity distributions, (3) V 2 A-Net enhances the quality of interfaces with the stratified flow, and (4) the pruned V 2 A-Net achieves significant speedup compared with the VDD-Net or V 2 DNet. The analyses show that the average relative error is 0.05, the average correlation coefficient is 0.92, the average structural similarity is 0.92 on the testing datasets. In addition, the average relative cover ratio is 0.97 and the average relative contrast ratio is 0.98 on the testing datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
newplayer发布了新的文献求助10
3秒前
陈饱饱完成签到,获得积分10
3秒前
小骄傲发布了新的文献求助10
4秒前
吴彦祖的通通完成签到 ,获得积分10
4秒前
不要加糖发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
kekeke777完成签到 ,获得积分10
7秒前
吴彦祖应助Takahara2000采纳,获得10
9秒前
9秒前
养乐多敬你完成签到 ,获得积分10
9秒前
小杨完成签到,获得积分10
9秒前
欣慰外套完成签到 ,获得积分10
10秒前
10秒前
Wow发布了新的文献求助10
10秒前
移动马桶完成签到 ,获得积分10
11秒前
12秒前
shufei完成签到,获得积分10
14秒前
dadadsad完成签到,获得积分10
14秒前
lige完成签到 ,获得积分10
14秒前
香蕉觅云应助小杨采纳,获得10
15秒前
wenlong完成签到 ,获得积分10
15秒前
15秒前
浮游应助礼貌吗采纳,获得10
16秒前
飞鸿影下完成签到 ,获得积分10
16秒前
1234发布了新的文献求助10
17秒前
lzy发布了新的文献求助10
17秒前
天天快乐应助不要加糖采纳,获得10
20秒前
聪慧松思完成签到,获得积分10
20秒前
时光不旧只是满尘灰完成签到 ,获得积分10
21秒前
Dragonfln完成签到,获得积分10
21秒前
21秒前
Orange应助ttly采纳,获得10
21秒前
淡定的鱼发布了新的文献求助10
22秒前
22秒前
YAYING完成签到 ,获得积分10
23秒前
23秒前
南风完成签到,获得积分10
23秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 941
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5443631
求助须知:如何正确求助?哪些是违规求助? 4553459
关于积分的说明 14242068
捐赠科研通 4475145
什么是DOI,文献DOI怎么找? 2452292
邀请新用户注册赠送积分活动 1443217
关于科研通互助平台的介绍 1418813