Impact of Transition Metal Layer Vacancy on the Structure and Performance of P2 Type Layered Sodium Cathode Material

阴极 电化学 过渡金属 空位缺陷 单独一对 氧化还原 材料科学 透射电子显微镜 分析化学(期刊) 扫描电子显微镜 化学 结晶学 纳米技术 电极 物理化学 冶金 分子 复合材料 有机化学 催化作用 生物化学 色谱法
作者
NULL AUTHOR_ID,NULL AUTHOR_ID,Natalia Voronina,NULL AUTHOR_ID,NULL AUTHOR_ID,Hun‐Gi Jung,Kyuwook Ihm,Olivier Guillon,Payam Kaghazchi,NULL AUTHOR_ID
出处
期刊:Nano-micro Letters [Springer Nature]
卷期号:16 (1)
标识
DOI:10.1007/s40820-024-01439-9
摘要

Abstract This study explores the impact of introducing vacancy in the transition metal layer of rationally designed Na 0.6 [Ni 0.3 Ru 0.3 Mn 0.4 ]O 2 (NRM) cathode material. The incorporation of Ru, Ni, and vacancy enhances the structural stability during extensive cycling, increases the operation voltage, and induces a capacity increase while also activating oxygen redox, respectively, in Na 0.7 [Ni 0.2 V Ni0.1 Ru 0.3 Mn 0.4 ]O 2 (V-NRM) compound. Various analytical techniques including transmission electron microscopy, X-ray absorption near edge spectroscopy, operando X-ray diffraction, and operando differential electrochemical mass spectrometry are employed to assess changes in the average oxidation states and structural distortions. The results demonstrate that V-NRM exhibits higher capacity than NRM and maintains a moderate capacity retention of 81% after 100 cycles. Furthermore, the formation of additional lone-pair electrons in the O 2 p orbital enables V-NRM to utilize more capacity from the oxygen redox validated by density functional calculation, leading to a widened dominance of the OP4 phase without releasing O 2 gas. These findings offer valuable insights for the design of advanced high-capacity cathode materials with improved performance and sustainability in sodium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助科研民工采纳,获得10
刚刚
忧郁凌波完成签到,获得积分10
刚刚
姜姜姜完成签到 ,获得积分10
1秒前
凶狠的绿兰完成签到,获得积分10
2秒前
多多少少忖测的情完成签到,获得积分10
2秒前
科研通AI5应助兴奋的宛白采纳,获得10
3秒前
4秒前
zhanlonglsj发布了新的文献求助10
4秒前
4秒前
芍药完成签到,获得积分10
4秒前
Yogita完成签到,获得积分10
5秒前
DoctorYan完成签到,获得积分10
5秒前
Adler完成签到,获得积分10
5秒前
6秒前
坐宝马吃地瓜完成签到 ,获得积分10
6秒前
SciGPT应助Strike采纳,获得10
6秒前
自强不息完成签到,获得积分10
6秒前
7秒前
czq发布了新的文献求助30
7秒前
望春风完成签到,获得积分10
7秒前
7秒前
huangJP完成签到,获得积分10
8秒前
情怀应助Tira采纳,获得10
8秒前
王阳洋完成签到,获得积分10
8秒前
8秒前
9秒前
通~发布了新的文献求助10
9秒前
李爱国应助非常可爱采纳,获得20
9秒前
9秒前
10秒前
阿敏发布了新的文献求助10
11秒前
JamesPei应助小憩采纳,获得10
11秒前
jkhjkhj发布了新的文献求助10
11秒前
风中香之发布了新的文献求助30
11秒前
忍冬完成签到,获得积分10
12秒前
Zhong发布了新的文献求助10
13秒前
胡图图关注了科研通微信公众号
13秒前
爱吃泡芙发布了新的文献求助20
13秒前
xiuxiu_27发布了新的文献求助10
13秒前
小书包完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740