漆酶
免疫
微生物学
生物
植物免疫
受体
激酶
酶
化学
细胞生物学
免疫系统
生物化学
免疫学
基因
拟南芥
突变体
作者
Yuhang Duan,Zhaoyun Wang,Yuan Fang,Zhangxin Pei,Hong Hu,Qiutao Xu,Hao Liu,Xiaolin Chen,Chaoxi Luo,Junbin Huang,Lu Zheng,Xiaoyang Chen
标识
DOI:10.1038/s41467-024-52204-w
摘要
The identification effector targets and characterization of their functions are crucial for understanding pathogen infection mechanisms and components of plant immunity. Here, we identify the effector UgsL, a ustilaginoidin synthetase with a key role in regulating virulence of the rice false smut fungus Ustilaginoidea virens. Heterologous expression of UgsL in rice (Oryza sativa) enhances plant susceptibility to multiple pathogens, and host-induced gene silencing of UgsL enhances plant resistance to U. virens, indicating that UgsL inhibits rice immunity. UgsL interacts with STRUBBELIG RECEPTOR KINASE 3 (OsSRF3). Genome editing and overexpression of OsSRF3 demonstrate that OsSRF3 plays a pivotal role in the resistance of rice to multiple pathogens. Remarkably, overexpressing OsSRF3 enhances resistance without adversely affecting plant growth or yield. We show that BRASSINOSTEROID RECEPTOR-ASSOCIATED KINASE 1 (OsBAK1) interacts with and phosphorylates OsSRF3 to activate pathogen-triggered immunity, inducing the mitogen-activated protein kinase cascade, a reactive oxygen species burst, callose deposition, and expression of defense-related genes. UgsL interferes with the phosphorylation of OsSRF3 by OsBAK1. Furthermore, UgsL mediates OsSRF3 degradation by facilitating its association with the ubiquitin-26S proteasome. Our results reveal that OsSRF3 positively regulates immunity in rice and that UgsL mediates its degradation, thereby inhibiting the activation of OsBAK1-OsSRF3-mediated immune pathways.
科研通智能强力驱动
Strongly Powered by AbleSci AI