Disentangling the Inverse LDL-C-hemorrhagic Stroke Association in Chinese Adults with Hypertension: Findings from the Chinese Multi-Provincial Cohort Study

医学 队列 内科学 冲程(发动机) 动脉粥样硬化性心血管疾病 队列研究 需要治疗的数量 内分泌学 胃肠病学 心脏病学 置信区间 疾病 相对风险 机械工程 工程类
作者
Zhao Yang,Yue Qi,Jiayi Sun,Jun Liu,Miao Wang,Qiujv Deng,Yongchen Hao,Na Yang,Zhili Ji,Xiao‐Hua Zhou,Jing Liu
出处
期刊:American Journal of Epidemiology [Oxford University Press]
被引量:3
标识
DOI:10.1093/aje/kwae318
摘要

Abstract Why lower low-density lipoprotein cholesterol (LDL-C) was associated with a decreased atherosclerotic cardiovascular disease (ASCVD) risk but an increased hemorrhagic stroke (HS) risk in hypertensive adults remains unclear. We examined whether the inverse LDL-C-HS association partly arises from its effect on ASCVD. We estimated separable effects of LDL-C on HS outside (i.e., separable direct effect) or only through its effect on ASCVD (i.e., separable indirect effect) in hypertensive adults from the Chinese Multi-provincial Cohort Study. We quantified such effects using numbers needed to treat (NNT) to prevent or cause an extra HS based on the restricted mean event-free time till a 25-year follow-up. LDL-C $<$ 70 mg/dL was not associated with an increased HS risk compared to LDL-C $\ge$ 70 mg/dL regarding total and separable direct effects. However, a small separable indirect effect (i.e., NNT to harm: 9722 participants) was noted and validated via a series of sensitivity analyses. Moreover, modified effects were observed, particularly in the 35-49-year age group, men, and those with SBP $\ge$ 140 mm Hg. These results suggest the inverse LDL-C-HS association in hypertensive adults is partly due to its effect on ASCVD. A better understanding of such associations would provide more enlightening into stroke prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清浅发布了新的文献求助30
1秒前
太想进部了完成签到,获得积分10
1秒前
1秒前
JamesPei应助干净的友卉采纳,获得10
1秒前
打打应助今天没有哭鸭采纳,获得10
1秒前
JamesPei应助易烊千玺老婆采纳,获得10
1秒前
1秒前
2秒前
852应助SYX采纳,获得30
2秒前
斯文败类应助小小小小采纳,获得10
2秒前
科研通AI6应助HAHA采纳,获得10
2秒前
坚定晓兰应助HAHA采纳,获得10
2秒前
科研通AI6应助HAHA采纳,获得10
2秒前
热心的易烟完成签到,获得积分10
2秒前
3秒前
Hello应助小学生采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
song发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
alvis关注了科研通微信公众号
5秒前
LingMg发布了新的文献求助30
6秒前
不安溪灵完成签到,获得积分10
6秒前
6秒前
6秒前
熊猫海发布了新的文献求助10
6秒前
7秒前
伞下铭发布了新的文献求助10
7秒前
7秒前
8秒前
Herzing发布了新的文献求助10
8秒前
8秒前
喜悦发卡完成签到,获得积分10
9秒前
小青椒应助斯文明杰采纳,获得30
9秒前
斯文凝蕊发布了新的文献求助10
9秒前
大个应助www采纳,获得10
9秒前
Y1B完成签到,获得积分10
9秒前
9秒前
糯米饭完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002