RPH-Counter: Field detection and counting of rice planthoppers using a fully convolutional network with object-level supervision

领域(数学) 对象(语法) 计算机科学 水田 人工智能 统计 数学 计算机视觉 地理 纯数学 考古
作者
Zhiliang Zhang,Wei Zhan,Kanglin Sun,Yu Zhang,Yuheng Guo,Zhangzhang He,Dengke Hua,Yong Sun,Xiongwei Zhang,shanshan tong,Lianyou Gui
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:225: 109242-109242
标识
DOI:10.1016/j.compag.2024.109242
摘要

Rice planthoppers are among the most severe migratory pests affecting rice, characterized by small size and rapid reproduction, leading to sudden and explosive outbreaks. Therefore, timely and accurate monitoring of rice planthopper populations is crucial. Applying machine vision to field monitoring of rice planthoppers can reduce labor and material costs. Existing literature lacks research on field detection and counting of rice planthoppers, and general detection and counting methods suffer from performance degradation in complex environments. In this study, we propose the Rice Planthopper Counter (RPH-Counter), a novel detection and counting architecture. The model is a simple Fully Convolutional Network (FCN). Initially, we propose the Object Counting loss (OC loss), which includes four sub-loss functions that compel the FCN to learn each object's center and boundary positions while constraining false positives. After training, the FCN can predict a separate spot for each rice planthopper, achieving precise localization and counting of the pests. Then, we propose the Self-Attention Feature Pyramid Network (SAFPN) by adding additional Spatial Self-Attention (SSA) modules at the lateral connections of C3 to C5, enhancing the model's performance in complex environments at a lower computational cost. We collected a large-scale field rice planthopper dataset, containing approximately 140,000 annotated rice planthoppers. The evaluation metrics are localization accuracy and counting error. Experimental results show that the RPH-Counter, with lower computational complexity, significantly improves performance, achieving an F1 score of 92.36%, a Mean Absolute Error (MAE) of only 2.40, and an R-squared (R2) of 0.985. Compared to the state-of-the-art object detectors, the F1 score improved by 8.62%, and the counting error decreased by 61%. Compared to the state-of-the-art density estimation methods, the counting error decreased by 23%, with precise localization ability and multi-class expandability. This method offers a new research approach and promising direction for field pest counting and pest population monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮皮发布了新的文献求助10
1秒前
斯文尔阳发布了新的文献求助10
2秒前
大模型应助小何采纳,获得10
3秒前
科研通AI5应助飞兰采纳,获得10
4秒前
胖大米完成签到 ,获得积分10
5秒前
嘻嘻完成签到,获得积分10
5秒前
超帅天曼发布了新的文献求助200
5秒前
强哥很强完成签到,获得积分10
6秒前
8秒前
9秒前
9秒前
10秒前
天天快乐应助byumi采纳,获得10
11秒前
搜集达人应助jiangqingquan采纳,获得10
11秒前
11秒前
小二郎应助孙成成采纳,获得10
12秒前
xunl发布了新的文献求助10
13秒前
14秒前
chxue应助Shirely采纳,获得10
14秒前
糖T糖完成签到 ,获得积分10
15秒前
16秒前
飞兰发布了新的文献求助10
16秒前
敢敢发布了新的文献求助10
17秒前
万能手术刀完成签到,获得积分10
17秒前
夏夏完成签到,获得积分10
19秒前
柏觅夏发布了新的文献求助30
19秒前
19秒前
小蘑菇应助小绵羊采纳,获得10
20秒前
21秒前
21秒前
21秒前
21秒前
星星的梦发布了新的文献求助30
23秒前
猪猪hero应助留胡子的南露采纳,获得10
23秒前
23秒前
赘婿应助S7采纳,获得10
24秒前
24秒前
evvj完成签到,获得积分10
26秒前
26秒前
byumi发布了新的文献求助10
27秒前
高分求助中
All the Birds of the World 3000
General Equilibrium, Capital and Macroeconomics 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3724321
求助须知:如何正确求助?哪些是违规求助? 3269814
关于积分的说明 9962200
捐赠科研通 2984300
什么是DOI,文献DOI怎么找? 1637329
邀请新用户注册赠送积分活动 777453
科研通“疑难数据库(出版商)”最低求助积分说明 747035