The Large Language Model GPT-4 Compared to Endocrinologist Responses on Initial Choice of Antidiabetic Medication under Conditions of Clinical Uncertainty

二甲双胍 医学 糖尿病 药方 肾功能 内科学 苦恼 内分泌学 药理学 临床心理学
作者
James Flory,Jessica S. Ancker,Scott Y. H. Kim,Gilad J. Kuperman,Aleksandr Petrov,Andrew J. Vickers
出处
期刊:Diabetes Care [American Diabetes Association]
被引量:3
标识
DOI:10.2337/dc24-1067
摘要

OBJECTIVE To explore how the commercially available large language model (LLM) GPT-4 compares to endocrinologists when addressing medical questions when there is uncertainty regarding the best answer. RESEARCH DESIGN AND METHODS This study compared responses from GPT-4 to responses from 31 endocrinologists using hypothetical clinical vignettes focused on diabetes, specifically examining the prescription of metformin versus alternative treatments. The primary outcome was the choice between metformin and other treatments. RESULTS With a simple prompt, GPT-4 chose metformin in 12% (95% CI 7.9–17%) of responses, compared with 31% (95% CI 23–39%) of endocrinologist responses. After modifying the prompt to encourage metformin use, the selection of metformin by GPT-4 increased to 25% (95% CI 22–28%). GPT-4 rarely selected metformin in patients with impaired kidney function, or a history of gastrointestinal distress (2.9% of responses, 95% CI 1.4–5.5%). In contrast, endocrinologists often prescribed metformin even in patients with a history of gastrointestinal distress (21% of responses, 95% CI 12–36%). GPT-4 responses showed low variability on repeated runs except at intermediate levels of kidney function. CONCLUSIONS In clinical scenarios with no single right answer, GPT-4’s responses were reasonable, but differed from endocrinologists’ responses in clinically important ways. Value judgments are needed to determine when these differences should be addressed by adjusting the model. We recommend against reliance on LLM output until it is shown to align not just with clinical guidelines but also with patient and clinician preferences, or it demonstrates improvement in clinical outcomes over standard of care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美夜白完成签到,获得积分10
刚刚
刚刚
刚刚
陆小果完成签到,获得积分10
刚刚
2秒前
健壮丝袜发布了新的文献求助10
2秒前
Jasper应助chinnker采纳,获得10
2秒前
2秒前
3秒前
3秒前
Run完成签到,获得积分10
3秒前
yizhiGao应助Jenaloe采纳,获得10
4秒前
昌笑白完成签到,获得积分10
4秒前
Kenzonvay发布了新的文献求助10
4秒前
Spinnin完成签到,获得积分10
4秒前
4秒前
慧慧发布了新的文献求助10
5秒前
kk发布了新的文献求助30
7秒前
7秒前
7秒前
诸葛凤雏完成签到,获得积分10
7秒前
diguohu完成签到,获得积分10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
caibao发布了新的文献求助10
8秒前
8秒前
Goodenough发布了新的文献求助10
9秒前
zhaoyy完成签到,获得积分20
10秒前
wls完成签到 ,获得积分10
10秒前
小马甲应助发嗲的悟空采纳,获得10
11秒前
粗心的采文完成签到,获得积分10
12秒前
慧慧完成签到,获得积分20
12秒前
12秒前
13秒前
14秒前
wengjiaqi完成签到,获得积分10
14秒前
完美夏天完成签到,获得积分10
15秒前
义气碧菡发布了新的文献求助10
15秒前
key完成签到,获得积分10
16秒前
02完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951219
求助须知:如何正确求助?哪些是违规求助? 3496615
关于积分的说明 11083276
捐赠科研通 3227034
什么是DOI,文献DOI怎么找? 1784184
邀请新用户注册赠送积分活动 868252
科研通“疑难数据库(出版商)”最低求助积分说明 801091