The Large Language Model GPT-4 Compared to Endocrinologist Responses on Initial Choice of Antidiabetic Medication under Conditions of Clinical Uncertainty

二甲双胍 医学 糖尿病 药方 肾功能 内科学 苦恼 内分泌学 药理学 临床心理学
作者
James Flory,Jessica S. Ancker,Scott Y. H. Kim,Gilad J. Kuperman,Aleksandr Petrov,Andrew J. Vickers
出处
期刊:Diabetes Care [American Diabetes Association]
被引量:2
标识
DOI:10.2337/dc24-1067
摘要

OBJECTIVE To explore how the commercially available large language model (LLM) GPT-4 compares to endocrinologists when addressing medical questions when there is uncertainty regarding the best answer. RESEARCH DESIGN AND METHODS This study compared responses from GPT-4 to responses from 31 endocrinologists using hypothetical clinical vignettes focused on diabetes, specifically examining the prescription of metformin versus alternative treatments. The primary outcome was the choice between metformin and other treatments. RESULTS With a simple prompt, GPT-4 chose metformin in 12% (95% CI 7.9–17%) of responses, compared with 31% (95% CI 23–39%) of endocrinologist responses. After modifying the prompt to encourage metformin use, the selection of metformin by GPT-4 increased to 25% (95% CI 22–28%). GPT-4 rarely selected metformin in patients with impaired kidney function, or a history of gastrointestinal distress (2.9% of responses, 95% CI 1.4–5.5%). In contrast, endocrinologists often prescribed metformin even in patients with a history of gastrointestinal distress (21% of responses, 95% CI 12–36%). GPT-4 responses showed low variability on repeated runs except at intermediate levels of kidney function. CONCLUSIONS In clinical scenarios with no single right answer, GPT-4’s responses were reasonable, but differed from endocrinologists’ responses in clinically important ways. Value judgments are needed to determine when these differences should be addressed by adjusting the model. We recommend against reliance on LLM output until it is shown to align not just with clinical guidelines but also with patient and clinician preferences, or it demonstrates improvement in clinical outcomes over standard of care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LexMz完成签到,获得积分10
1秒前
稳重向南发布了新的文献求助20
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
荔枝发布了新的文献求助10
2秒前
3秒前
zeroyee发布了新的文献求助10
3秒前
3秒前
3秒前
lw发布了新的文献求助10
3秒前
4秒前
lw发布了新的文献求助10
4秒前
lw发布了新的文献求助10
4秒前
lw发布了新的文献求助10
5秒前
lw发布了新的文献求助10
5秒前
lw发布了新的文献求助10
5秒前
哈哈完成签到,获得积分10
5秒前
lw发布了新的文献求助10
5秒前
lw发布了新的文献求助10
5秒前
科研通AI5应助没有昵称采纳,获得10
6秒前
lw发布了新的文献求助10
6秒前
flyzhang20发布了新的文献求助10
7秒前
火龙果发布了新的文献求助10
7秒前
AnyYuan完成签到 ,获得积分10
7秒前
小鸣完成签到 ,获得积分10
7秒前
7秒前
SciGPT应助豆包采纳,获得10
7秒前
7秒前
皇甫思山发布了新的文献求助10
7秒前
lw发布了新的文献求助10
7秒前
lw发布了新的文献求助10
7秒前
8秒前
8秒前
orixero应助小陈采纳,获得10
8秒前
8秒前
研友_LXOrO8完成签到,获得积分10
9秒前
zeroyee完成签到,获得积分10
10秒前
11秒前
今后应助科研通管家采纳,获得10
12秒前
FL应助科研通管家采纳,获得20
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660456
求助须知:如何正确求助?哪些是违规求助? 3221747
关于积分的说明 9741755
捐赠科研通 2931057
什么是DOI,文献DOI怎么找? 1604753
邀请新用户注册赠送积分活动 757535
科研通“疑难数据库(出版商)”最低求助积分说明 734450