The Large Language Model GPT-4 Compared to Endocrinologist Responses on Initial Choice of Antidiabetic Medication under Conditions of Clinical Uncertainty

二甲双胍 医学 糖尿病 药方 肾功能 内科学 苦恼 内分泌学 药理学 临床心理学
作者
James Flory,Jessica S. Ancker,Scott Y. H. Kim,Gilad J. Kuperman,Aleksandr Petrov,Andrew J. Vickers
出处
期刊:Diabetes Care [American Diabetes Association]
标识
DOI:10.2337/dc24-1067
摘要

OBJECTIVE To explore how the commercially available large language model (LLM) GPT-4 compares to endocrinologists when addressing medical questions when there is uncertainty regarding the best answer. RESEARCH DESIGN AND METHODS This study compared responses from GPT-4 to responses from 31 endocrinologists using hypothetical clinical vignettes focused on diabetes, specifically examining the prescription of metformin versus alternative treatments. The primary outcome was the choice between metformin and other treatments. RESULTS With a simple prompt, GPT-4 chose metformin in 12% (95% CI 7.9–17%) of responses, compared with 31% (95% CI 23–39%) of endocrinologist responses. After modifying the prompt to encourage metformin use, the selection of metformin by GPT-4 increased to 25% (95% CI 22–28%). GPT-4 rarely selected metformin in patients with impaired kidney function, or a history of gastrointestinal distress (2.9% of responses, 95% CI 1.4–5.5%). In contrast, endocrinologists often prescribed metformin even in patients with a history of gastrointestinal distress (21% of responses, 95% CI 12–36%). GPT-4 responses showed low variability on repeated runs except at intermediate levels of kidney function. CONCLUSIONS In clinical scenarios with no single right answer, GPT-4’s responses were reasonable, but differed from endocrinologists’ responses in clinically important ways. Value judgments are needed to determine when these differences should be addressed by adjusting the model. We recommend against reliance on LLM output until it is shown to align not just with clinical guidelines but also with patient and clinician preferences, or it demonstrates improvement in clinical outcomes over standard of care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
原野小年发布了新的文献求助10
刚刚
1秒前
耍酷天荷完成签到,获得积分20
1秒前
1秒前
3秒前
4秒前
FXDD完成签到,获得积分10
5秒前
6秒前
科研小助完成签到,获得积分10
6秒前
111完成签到,获得积分10
7秒前
思源应助淡然的俊驰采纳,获得30
7秒前
要减肥岩完成签到,获得积分10
8秒前
keikeizi发布了新的文献求助30
8秒前
李健的小迷弟应助Ijaz采纳,获得10
8秒前
9秒前
9秒前
DAWN发布了新的文献求助10
10秒前
10秒前
烂漫念文应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
大个应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
大模型应助科研通管家采纳,获得10
11秒前
11秒前
天天快乐应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得30
11秒前
NexusExplorer应助科研通管家采纳,获得30
11秒前
科研通AI2S应助科研通管家采纳,获得30
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
12秒前
鲸鱼应助科研通管家采纳,获得10
12秒前
12秒前
田様应助科研通管家采纳,获得10
12秒前
12秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138196
求助须知:如何正确求助?哪些是违规求助? 2789101
关于积分的说明 7790287
捐赠科研通 2445509
什么是DOI,文献DOI怎么找? 1300476
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601046