TopoTune : A Framework for Generalized Combinatorial Complex Neural Networks

计算机科学 人工神经网络 人工智能
作者
Mathilde Papillon,Guillermo Bernárdez,Claudio Battiloro,Nina Miolane
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.06530
摘要

Graph Neural Networks (GNNs) excel in learning from relational datasets, processing node and edge features in a way that preserves the symmetries of the graph domain. However, many complex systems--such as biological or social networks--involve multiway complex interactions that are more naturally represented by higher-order topological spaces. The emerging field of Topological Deep Learning (TDL) aims to accommodate and leverage these higher-order structures. Combinatorial Complex Neural Networks (CCNNs), fairly general TDL models, have been shown to be more expressive and better performing than GNNs. However, differently from the graph deep learning ecosystem, TDL lacks a principled and standardized framework for easily defining new architectures, restricting its accessibility and applicability. To address this issue, we introduce Generalized CCNNs (GCCNs), a novel simple yet powerful family of TDL models that can be used to systematically transform any (graph) neural network into its TDL counterpart. We prove that GCCNs generalize and subsume CCNNs, while extensive experiments on a diverse class of GCCNs show that these architectures consistently match or outperform CCNNs, often with less model complexity. In an effort to accelerate and democratize TDL, we introduce TopoTune, a lightweight software that allows practitioners to define, build, and train GCCNs with unprecedented flexibility and ease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
谦让的凤灵完成签到,获得积分10
刚刚
1秒前
2秒前
关灯完成签到,获得积分10
3秒前
SZY完成签到 ,获得积分10
3秒前
4秒前
Marlatinda发布了新的文献求助10
4秒前
5秒前
苻慕梅发布了新的文献求助10
5秒前
6秒前
8秒前
Zml200123完成签到,获得积分10
9秒前
毛豆应助呆瓜采纳,获得10
9秒前
毛豆应助呆瓜采纳,获得10
9秒前
毛豆应助呆瓜采纳,获得10
9秒前
大模型应助呆瓜采纳,获得10
9秒前
毛豆应助呆瓜采纳,获得10
9秒前
毛豆应助呆瓜采纳,获得10
9秒前
毛豆应助呆瓜采纳,获得10
9秒前
小二郎应助呆瓜采纳,获得10
9秒前
毛豆应助呆瓜采纳,获得10
9秒前
丘比特应助呆瓜采纳,获得10
9秒前
灵巧白安发布了新的文献求助10
9秒前
小虎呀发布了新的文献求助10
11秒前
美有姬完成签到,获得积分10
11秒前
打打应助懒羊羊采纳,获得10
12秒前
SLS发布了新的文献求助20
12秒前
文静元风完成签到,获得积分10
15秒前
16秒前
16秒前
18秒前
科研通AI2S应助文静元风采纳,获得10
20秒前
失似发布了新的文献求助10
22秒前
bbbbb完成签到,获得积分10
22秒前
科研通AI2S应助自然的如南采纳,获得50
24秒前
cbx完成签到,获得积分10
25秒前
29秒前
30秒前
今后应助小海绵采纳,获得30
32秒前
高分求助中
Востребованный временем 2500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
Development and Industrialization of Stereoregular Polynorbornenes 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3421494
求助须知:如何正确求助?哪些是违规求助? 3022225
关于积分的说明 8899644
捐赠科研通 2709464
什么是DOI,文献DOI怎么找? 1485778
科研通“疑难数据库(出版商)”最低求助积分说明 686900
邀请新用户注册赠送积分活动 681980