Artificial Intelligence-Assisted MRI Diagnosis in Lumbar Degenerative Disc Disease: A Systematic Review

医学 腰椎 系统回顾 机器学习 人工智能 腰痛 退行性椎间盘病 数据提取 磁共振成像 梅德林 放射科 计算机科学 病理 替代医学 政治学 法学
作者
Wongthawat Liawrungrueang,Jong Beom Park,Watcharaporn Cholamjiak,Peem Sarasombath,K. Daniel Riew
出处
期刊:Global Spine Journal [SAGE]
标识
DOI:10.1177/21925682241274372
摘要

Study Design Systematic review. Objectives Lumbar degenerative disc disease (DDD) poses a significant global health care challenge, with accurate diagnosis being difficult using conventional methods. Artificial intelligence (AI), particularly machine learning and deep learning, offers promising tools for improving diagnostic accuracy and workflow in lumbar DDD. This study aims to review AI-assisted magnetic resonance imaging (MRI) diagnosis in lumbar DDD and discuss current research for clinical use. Methods A systematic search of electronic databases identified studies on AI applications in MRI-based lumbar DDD diagnosis, following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Search terms included combinations of “Artificial Intelligence,” “Machine Learning,” “Deep Learning,” “Low Back Pain,” “Lumbar,” “Disc,” “Degeneration,” and “MRI,” targeting studies in English from January 1, 2010, to January 1, 2024. Inclusion criteria encompassed experimental and observational studies in peer-reviewed journals. Data extraction focused on study characteristics, AI techniques, performance metrics, and diagnostic outcomes, with quality assessed using predefined criteria. Results Twenty studies met the inclusion criteria, employing various AI methodologies, including machine learning and deep learning, to diagnose lumbar DDD manifestations such as disc degeneration, herniation, and bulging. AI models consistently outperformed conventional methods in accuracy, sensitivity, and specificity, with performance metrics ranging from 71.5% to 99% across different diagnostic objectives. Conclusion The algorithm model provides a structured framework for integrating AI into routine clinical practice, enhancing diagnostic precision and patient outcomes in lumbar DDD management. Further research and validation are needed to refine AI algorithms for real-world application in lumbar DDD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mimi完成签到,获得积分10
刚刚
斯文败类应助愤怒的笙采纳,获得10
刚刚
卢玥沅发布了新的文献求助10
1秒前
来了完成签到,获得积分10
1秒前
zjw完成签到,获得积分10
1秒前
香蕉凛完成签到 ,获得积分10
1秒前
1秒前
糖葫芦完成签到,获得积分10
2秒前
123456完成签到,获得积分20
2秒前
虚幻龙猫完成签到,获得积分10
3秒前
Orange应助Goomo采纳,获得30
5秒前
jiesenya完成签到,获得积分10
5秒前
刁刁完成签到 ,获得积分20
5秒前
5秒前
5秒前
Fang发布了新的文献求助30
6秒前
1123完成签到,获得积分20
6秒前
开放的向雁完成签到 ,获得积分10
8秒前
8秒前
9秒前
cxq发布了新的文献求助10
9秒前
Bonnie发布了新的文献求助10
9秒前
苏格拉底的嘲笑完成签到,获得积分10
11秒前
11秒前
鲤鱼寒梦完成签到,获得积分10
12秒前
12秒前
佟厉完成签到 ,获得积分10
12秒前
小蘑菇应助小易采纳,获得10
14秒前
Spring完成签到,获得积分10
14秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
fishbig发布了新的文献求助10
14秒前
顾矜应助Frank采纳,获得30
14秒前
frr发布了新的文献求助10
15秒前
15秒前
狂犬喵发布了新的文献求助10
16秒前
17秒前
fufu完成签到,获得积分20
18秒前
lalala发布了新的文献求助30
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424782
求助须知:如何正确求助?哪些是违规求助? 4539099
关于积分的说明 14165553
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444061
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483