Artificial Intelligence-Assisted MRI Diagnosis in Lumbar Degenerative Disc Disease: A Systematic Review

医学 腰椎 系统回顾 机器学习 人工智能 腰痛 退行性椎间盘病 数据提取 磁共振成像 梅德林 放射科 计算机科学 病理 替代医学 政治学 法学
作者
Wongthawat Liawrungrueang,Jong Beom Park,Watcharaporn Cholamjiak,Peem Sarasombath,K. Daniel Riew
出处
期刊:Global Spine Journal [SAGE]
标识
DOI:10.1177/21925682241274372
摘要

Study Design Systematic review. Objectives Lumbar degenerative disc disease (DDD) poses a significant global health care challenge, with accurate diagnosis being difficult using conventional methods. Artificial intelligence (AI), particularly machine learning and deep learning, offers promising tools for improving diagnostic accuracy and workflow in lumbar DDD. This study aims to review AI-assisted magnetic resonance imaging (MRI) diagnosis in lumbar DDD and discuss current research for clinical use. Methods A systematic search of electronic databases identified studies on AI applications in MRI-based lumbar DDD diagnosis, following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Search terms included combinations of “Artificial Intelligence,” “Machine Learning,” “Deep Learning,” “Low Back Pain,” “Lumbar,” “Disc,” “Degeneration,” and “MRI,” targeting studies in English from January 1, 2010, to January 1, 2024. Inclusion criteria encompassed experimental and observational studies in peer-reviewed journals. Data extraction focused on study characteristics, AI techniques, performance metrics, and diagnostic outcomes, with quality assessed using predefined criteria. Results Twenty studies met the inclusion criteria, employing various AI methodologies, including machine learning and deep learning, to diagnose lumbar DDD manifestations such as disc degeneration, herniation, and bulging. AI models consistently outperformed conventional methods in accuracy, sensitivity, and specificity, with performance metrics ranging from 71.5% to 99% across different diagnostic objectives. Conclusion The algorithm model provides a structured framework for integrating AI into routine clinical practice, enhancing diagnostic precision and patient outcomes in lumbar DDD management. Further research and validation are needed to refine AI algorithms for real-world application in lumbar DDD diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧心的碧完成签到,获得积分20
刚刚
刚刚
优雅的废完成签到,获得积分10
1秒前
FashionBoy应助optics1992采纳,获得10
2秒前
2秒前
等待的龙猫完成签到,获得积分10
2秒前
tanc完成签到,获得积分10
2秒前
2秒前
高高天抒完成签到,获得积分10
3秒前
英俊的铭应助zz采纳,获得10
3秒前
3秒前
ENG发布了新的文献求助10
3秒前
4秒前
Azure完成签到,获得积分10
4秒前
廿二发布了新的文献求助30
5秒前
量子星尘发布了新的文献求助10
5秒前
神勇晓旋完成签到,获得积分10
5秒前
eye完成签到,获得积分10
5秒前
十一完成签到,获得积分10
6秒前
6秒前
7秒前
hailan完成签到,获得积分10
7秒前
Survive完成签到,获得积分10
7秒前
花已烬完成签到,获得积分10
8秒前
MIZU完成签到,获得积分10
9秒前
leezz发布了新的文献求助10
9秒前
凡凡发布了新的文献求助10
9秒前
9秒前
加油少年完成签到,获得积分10
10秒前
SciGPT应助十一采纳,获得10
10秒前
yao完成签到,获得积分10
10秒前
负责御姐完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
暗中观察发布了新的文献求助10
12秒前
13秒前
13秒前
完美世界应助群_科大采纳,获得10
13秒前
羊羊羊发布了新的文献求助10
14秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773892
求助须知:如何正确求助?哪些是违规求助? 5614543
关于积分的说明 15433335
捐赠科研通 4906309
什么是DOI,文献DOI怎么找? 2640191
邀请新用户注册赠送积分活动 1588031
关于科研通互助平台的介绍 1543027