Artificial Intelligence-Assisted MRI Diagnosis in Lumbar Degenerative Disc Disease: A Systematic Review

医学 腰椎 系统回顾 机器学习 人工智能 腰痛 退行性椎间盘病 数据提取 磁共振成像 梅德林 放射科 计算机科学 病理 替代医学 政治学 法学
作者
Wongthawat Liawrungrueang,Jong Beom Park,Watcharaporn Cholamjiak,Peem Sarasombath,K. Daniel Riew
出处
期刊:Global Spine Journal [SAGE]
标识
DOI:10.1177/21925682241274372
摘要

Study Design Systematic review. Objectives Lumbar degenerative disc disease (DDD) poses a significant global health care challenge, with accurate diagnosis being difficult using conventional methods. Artificial intelligence (AI), particularly machine learning and deep learning, offers promising tools for improving diagnostic accuracy and workflow in lumbar DDD. This study aims to review AI-assisted magnetic resonance imaging (MRI) diagnosis in lumbar DDD and discuss current research for clinical use. Methods A systematic search of electronic databases identified studies on AI applications in MRI-based lumbar DDD diagnosis, following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Search terms included combinations of “Artificial Intelligence,” “Machine Learning,” “Deep Learning,” “Low Back Pain,” “Lumbar,” “Disc,” “Degeneration,” and “MRI,” targeting studies in English from January 1, 2010, to January 1, 2024. Inclusion criteria encompassed experimental and observational studies in peer-reviewed journals. Data extraction focused on study characteristics, AI techniques, performance metrics, and diagnostic outcomes, with quality assessed using predefined criteria. Results Twenty studies met the inclusion criteria, employing various AI methodologies, including machine learning and deep learning, to diagnose lumbar DDD manifestations such as disc degeneration, herniation, and bulging. AI models consistently outperformed conventional methods in accuracy, sensitivity, and specificity, with performance metrics ranging from 71.5% to 99% across different diagnostic objectives. Conclusion The algorithm model provides a structured framework for integrating AI into routine clinical practice, enhancing diagnostic precision and patient outcomes in lumbar DDD management. Further research and validation are needed to refine AI algorithms for real-world application in lumbar DDD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Stephanie完成签到,获得积分20
刚刚
C_Cppp发布了新的文献求助10
刚刚
大抽是谁完成签到,获得积分10
刚刚
1秒前
Q0应助Hangerli采纳,获得20
1秒前
1秒前
黎土土发布了新的文献求助50
3秒前
3秒前
大抽是谁发布了新的文献求助10
4秒前
4秒前
李健的小迷弟应助公茂源采纳,获得30
4秒前
失眠的凝雁完成签到,获得积分10
4秒前
科研通AI5应助赖道之采纳,获得10
4秒前
Menand完成签到,获得积分10
5秒前
学者发布了新的文献求助10
5秒前
清新完成签到,获得积分10
5秒前
陶弈衡完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
愉快盼曼发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
nemo发布了新的文献求助10
11秒前
学术蝗虫完成签到,获得积分10
11秒前
justin完成签到,获得积分10
12秒前
西瓜啵啵完成签到,获得积分10
14秒前
小周完成签到,获得积分10
14秒前
Louki完成签到 ,获得积分10
14秒前
温暖的颜演完成签到 ,获得积分10
15秒前
yudandan@CJLU发布了新的文献求助10
16秒前
科研小民工应助_呱_采纳,获得50
16秒前
愉快盼曼完成签到,获得积分20
16秒前
研友_VZG7GZ应助小狗同志006采纳,获得10
17秒前
123完成签到,获得积分10
17秒前
13679165979发布了新的文献求助10
18秒前
温暖的钻石完成签到,获得积分10
18秒前
科研通AI5应助赖道之采纳,获得10
18秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808