Artificial Intelligence-Assisted MRI Diagnosis in Lumbar Degenerative Disc Disease: A Systematic Review

医学 腰椎 系统回顾 机器学习 人工智能 腰痛 退行性椎间盘病 数据提取 磁共振成像 梅德林 放射科 计算机科学 病理 替代医学 政治学 法学
作者
Wongthawat Liawrungrueang,Jong Beom Park,Watcharaporn Cholamjiak,Peem Sarasombath,K. Daniel Riew
出处
期刊:Global Spine Journal [SAGE]
标识
DOI:10.1177/21925682241274372
摘要

Study Design Systematic review. Objectives Lumbar degenerative disc disease (DDD) poses a significant global health care challenge, with accurate diagnosis being difficult using conventional methods. Artificial intelligence (AI), particularly machine learning and deep learning, offers promising tools for improving diagnostic accuracy and workflow in lumbar DDD. This study aims to review AI-assisted magnetic resonance imaging (MRI) diagnosis in lumbar DDD and discuss current research for clinical use. Methods A systematic search of electronic databases identified studies on AI applications in MRI-based lumbar DDD diagnosis, following Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. Search terms included combinations of “Artificial Intelligence,” “Machine Learning,” “Deep Learning,” “Low Back Pain,” “Lumbar,” “Disc,” “Degeneration,” and “MRI,” targeting studies in English from January 1, 2010, to January 1, 2024. Inclusion criteria encompassed experimental and observational studies in peer-reviewed journals. Data extraction focused on study characteristics, AI techniques, performance metrics, and diagnostic outcomes, with quality assessed using predefined criteria. Results Twenty studies met the inclusion criteria, employing various AI methodologies, including machine learning and deep learning, to diagnose lumbar DDD manifestations such as disc degeneration, herniation, and bulging. AI models consistently outperformed conventional methods in accuracy, sensitivity, and specificity, with performance metrics ranging from 71.5% to 99% across different diagnostic objectives. Conclusion The algorithm model provides a structured framework for integrating AI into routine clinical practice, enhancing diagnostic precision and patient outcomes in lumbar DDD management. Further research and validation are needed to refine AI algorithms for real-world application in lumbar DDD diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒冷平蓝发布了新的文献求助10
1秒前
2秒前
4秒前
安静的瑾瑜完成签到 ,获得积分10
4秒前
MOMO完成签到 ,获得积分10
4秒前
4秒前
5秒前
Kris发布了新的文献求助10
8秒前
fountainli发布了新的文献求助50
9秒前
疯少发布了新的文献求助10
10秒前
11秒前
CY完成签到,获得积分10
11秒前
深情安青应助2024论文计划采纳,获得30
12秒前
SciGPT应助迅速灵竹采纳,获得10
12秒前
13秒前
小扬仔21发布了新的文献求助10
14秒前
科研通AI2S应助吴雨木目采纳,获得10
14秒前
YHQ完成签到,获得积分10
15秒前
年年年年发布了新的文献求助10
16秒前
17秒前
Zeeshan关注了科研通微信公众号
17秒前
abrakadabra完成签到,获得积分10
18秒前
Lucas应助Nevaeh采纳,获得10
20秒前
20秒前
Jau完成签到,获得积分0
20秒前
班里发布了新的文献求助10
20秒前
22秒前
22秒前
22秒前
宋泽艺完成签到 ,获得积分10
22秒前
24秒前
小二郎应助阳阳采纳,获得10
25秒前
科研通AI2S应助迪迦采纳,获得10
25秒前
LXB发布了新的文献求助10
26秒前
忱麓裔发布了新的文献求助10
26秒前
迅速灵竹发布了新的文献求助10
27秒前
27秒前
28秒前
28秒前
兔子云完成签到 ,获得积分10
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308460
求助须知:如何正确求助?哪些是违规求助? 2941800
关于积分的说明 8505877
捐赠科研通 2616792
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648999