清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

FlavorMiner: A Machine Learning Platform for Extracting Molecular Flavor Profiles from Structural Data

风味 机器学习 计算机科学 人工智能 班级(哲学) 随机森林 重采样 过程(计算) 数据挖掘 食品科学 化学 操作系统
作者
Fabio Herrera‐Rocha,Miguel Fernández-Niño,Jorge Duitama,Mónica P. Cala,María José Chica,Ludger A. Wessjohann,Mehdi D. Davari,Andrés Fernando González Barrios
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4768238/v1
摘要

Abstract Flavor is the main factor driving consumers acceptance of food products. However, tracking the biochemistry of flavor is a formidable challenge due to the complexity of food composition. Current methodologies for linking individual molecules to flavor in foods and beverages are expensive and time-consuming. Predictive models based on machine learning (ML) are emerging as an alternative to speed up this process. Nonetheless, the optimal approach to predict flavor features of molecules remains elusive. In this work we present FlavorMiner, an ML-based multilabel flavor predictor. FlavorMiner seamlessly integrates different combinations of algorithms and mathematical representations, augmented with class balance strategies to address the inherent class of the input dataset. Notably, Random Forest and K-Nearest Neighbors combined with Extended Connectivity Fingerprint and RDKit molecular descriptors consistently outperform other combinations in most cases. Resampling strategies surpass weight balance methods in mitigating bias associated with class imbalance. FlavorMiner exhibits remarkable accuracy, with an average ROC AUC score of 0.88. This algorithm was used to analyze cocoa metabolomics data, unveiling its profound potential to help extract valuable insights from intricate food metabolomics data. FlavorMiner can be used for flavor mining in any food product, drawing from a diverse training dataset that spans over 934 distinct food products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
12秒前
14秒前
vitamin完成签到 ,获得积分10
15秒前
17秒前
19秒前
20秒前
23秒前
陈媛发布了新的文献求助10
24秒前
Jasper应助陈媛采纳,获得10
36秒前
44秒前
jasmine完成签到,获得积分10
48秒前
1分钟前
uikymh完成签到 ,获得积分0
1分钟前
1分钟前
Artin完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
胖头鱼please完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Lorin完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139610
求助须知:如何正确求助?哪些是违规求助? 2790479
关于积分的说明 7795348
捐赠科研通 2446958
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176