清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MD-DCNN: Multi-Scale Dilation-Based Deep Convolution Neural Network for epilepsy detection using electroencephalogram signals

过度拟合 发作性 癫痫 卷积神经网络 脑电图 计算机科学 二元分类 深度学习 模式识别(心理学) 人工智能 人工神经网络 机器学习 神经科学 心理学 支持向量机
作者
Mohan Karnati,Geet Sahu,Akanksha Yadav,Ayan Seal,Joanna Jaworek-Korjakowska,Marek Penhaker,Ondřej Krejcar
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:301: 112322-112322 被引量:1
标识
DOI:10.1016/j.knosys.2024.112322
摘要

Approximately 65 million individuals experience epilepsy globally. Surgery or medication cannot cure more than 30% of epilepsy patients.However, through therapeutic intervention, anticipating a seizure can help us avoid it. According to previous studies, aberrant activity inside the brain begins a few minutes before the onset of a seizure, known as a pre-ictal state. Many researchers have attempted to anticipate the pre-ictal condition of a seizure; however, achieving high sensitivity and specificity remains challenging. Therefore, deep learning-based early diagnostic tools for epilepsy therapies using electroencephalogram (EEG) signals are urgently needed. Traditional methods perform well in binary epilepsy scenarios, such as normal vs. ictal, but poorly in ternary situations, such as ictal vs. normal vs. inter-ictal. This study proposes a multi-scale dilated convolution-based network (MD-DCNN) to predict seizures or epilepsy. Traditional DCNNs for epilepsy classification overfit due to insufficient training data (fewer subjects). Windowing 2-sec EEG recordings and extracting the frequency sub-band from each window prevents overfitting in deep networks, which lack training data. We convert each segmented window and its sub-bands into scalogram images and input them into MD-DCNN. The proposed MD-DCNN combines data from several scales without narrowing the acquisition domain. Integrating detailed information into high-level semantic features improves network interpretation and classification. The proposed MD-DCNN is evaluated for two-class, three-class, and cross-database strategy problems using three publicly accessible databases. Experiments show that the MD-DCNN statistically performs better than 13 other current approaches. This demonstrates its potential for developing equipment capable of measuring, monitoring, and recording EEG signals to diagnose epilepsy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Yesaniar发布了新的文献求助10
5秒前
10秒前
科研通AI2S应助白华苍松采纳,获得10
29秒前
back you up完成签到,获得积分10
44秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
1分钟前
科研通AI5应助甜蜜如容采纳,获得10
2分钟前
lala发布了新的文献求助10
2分钟前
2分钟前
甜蜜如容发布了新的文献求助10
2分钟前
2分钟前
Yesaniar发布了新的文献求助10
2分钟前
2分钟前
SciGPT应助Yesaniar采纳,获得10
2分钟前
干净绿真完成签到,获得积分10
2分钟前
忘忧Aquarius完成签到,获得积分10
3分钟前
晓峰完成签到,获得积分20
3分钟前
tszjw168完成签到 ,获得积分10
3分钟前
Lucas应助梦里贪乐采纳,获得10
3分钟前
4分钟前
zyp应助科研通管家采纳,获得10
4分钟前
李健的小迷弟应助AEL采纳,获得10
5分钟前
5分钟前
梦里贪乐发布了新的文献求助10
5分钟前
5分钟前
6分钟前
宇文非笑完成签到 ,获得积分10
6分钟前
胡杨树2006完成签到,获得积分10
6分钟前
6分钟前
耍酷如柏发布了新的文献求助10
6分钟前
cc完成签到,获得积分10
6分钟前
zyp应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
赘婿应助耍酷如柏采纳,获得10
7分钟前
善学以致用应助梦里贪乐采纳,获得10
7分钟前
科目三应助Omni采纳,获得10
7分钟前
滕皓轩完成签到 ,获得积分10
7分钟前
耍酷如柏完成签到,获得积分10
7分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516380
求助须知:如何正确求助?哪些是违规求助? 3098637
关于积分的说明 9240228
捐赠科研通 2793747
什么是DOI,文献DOI怎么找? 1533239
邀请新用户注册赠送积分活动 712622
科研通“疑难数据库(出版商)”最低求助积分说明 707387