全息术
计算全息
全息显示器
宽带
光学
计算机科学
立体显示器
图像质量
数字全息术
镜头(地质)
可视化
带宽(计算)
像素
波前
串扰
材料科学
计算机视觉
人工智能
物理
电信
图像(数学)
作者
Shuo Sun,Jin Li,Xiaoxun Li,Xiangyu Huang,Yi Zhang,Liang Chen
出处
期刊:APL photonics
[AIP Publishing]
日期:2024-08-01
卷期号:9 (8)
被引量:4
摘要
Holographic display is considered the holy grail of photorealistic three-dimensional (3D) visualization technology because it can provide arbitrary wavefronts related to the essential visual cues of 3D images. Metasurfaces with exceptional high-pixel light modulation capability are increasingly favored for implementing high-quality 3D holography. However, current 3D metasurface holography always has some trade-offs among lots of algorithmic data, acceptable time, image quality, and structure complexity. Therefore, the development of a high-efficiency 3D metasurface holography device is still necessary to meet the increasing high space bandwidth product (SBP) of 3D technology. Here, based on the holographic-lens (HL) computer-generated hologram (CGH) algorithm, we experimentally demonstrate a new 3D metasurface holography device that integrates the 3D image phase cues and multiple layers of virtual lenses with different focal lengths, which exhibits significant capabilities in terms of ultra-high spatial pixel modulation and the generation of high-quality 3D holography characterized by high-efficiency, broadband response, low-crosstalk, and reduced acceptable time. The HL-CGH algorithm was efficiently integrated into parameter-optimized α-Si nanopillar meta-atoms, enabling enhanced visualization of 3D clues in a lens-free system. The prepared 3D HL-metasurface holography presented the presence of multiple depths of a 3D holographic image across a broad spectral range (400–900 nm), providing enhanced 3D visual cues. Our work provides a new perspective on designing metasurface-driven high-SBP 3D holography.
科研通智能强力驱动
Strongly Powered by AbleSci AI