已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting gastric cancer response to anti-HER2 therapy or anti-HER2 combined immunotherapy based on multi-modal data

免疫疗法 医学 癌症 联合疗法 队列 肿瘤科 内科学
作者
Zifan Chen,Yang Chen,Yukui Zhang,Lei Tang,Li Zhang,Yajie Hu,He Meng,Zhiwei Li,Siyuan Cheng,Jiajia Yuan,Zhenghang Wang,Yakun Wang,Jie Zhao,Jifang Gong,Liying Zhao,Baoshan Cao,Guoxin Li,Xiao-Tian Zhang,Bin Dong,Lin Shen
出处
期刊:Signal Transduction and Targeted Therapy [Springer Nature]
卷期号:9 (1)
标识
DOI:10.1038/s41392-024-01932-y
摘要

Abstract The sole use of single modality data often fails to capture the complex heterogeneity among patients, including the variability in resistance to anti-HER2 therapy and outcomes of combined treatment regimens, for the treatment of HER2-positive gastric cancer (GC). This modality deficit has not been fully considered in many studies. Furthermore, the application of artificial intelligence in predicting the treatment response, particularly in complex diseases such as GC, is still in its infancy. Therefore, this study aimed to use a comprehensive analytic approach to accurately predict treatment responses to anti-HER2 therapy or anti-HER2 combined immunotherapy in patients with HER2-positive GC. We collected multi-modal data, comprising radiology, pathology, and clinical information from a cohort of 429 patients: 310 treated with anti-HER2 therapy and 119 treated with a combination of anti-HER2 and anti-PD-1/PD-L1 inhibitors immunotherapy. We introduced a deep learning model, called the Multi-Modal model (MuMo), that integrates these data to make precise treatment response predictions. MuMo achieved an area under the curve score of 0.821 for anti-HER2 therapy and 0.914 for combined immunotherapy. Moreover, patients classified as low-risk by MuMo exhibited significantly prolonged progression-free survival and overall survival (log-rank test, P < 0.05). These findings not only highlight the significance of multi-modal data analysis in enhancing treatment evaluation and personalized medicine for HER2-positive gastric cancer, but also the potential and clinical value of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北区小阿神完成签到,获得积分10
1秒前
852应助Ternura采纳,获得10
2秒前
4秒前
可爱的函函应助corre采纳,获得10
6秒前
7秒前
7秒前
abc发布了新的文献求助10
10秒前
dingding发布了新的文献求助10
11秒前
Cheney发布了新的文献求助10
11秒前
Dingyiren发布了新的文献求助20
12秒前
基围虾完成签到,获得积分10
17秒前
坚强的严青应助丁又菡采纳,获得70
17秒前
miao完成签到 ,获得积分10
18秒前
鱼鱼发布了新的文献求助10
18秒前
20秒前
文静的人雄完成签到,获得积分10
21秒前
21秒前
烟花应助abc采纳,获得10
21秒前
传奇3应助zhou采纳,获得10
23秒前
李兴完成签到 ,获得积分10
24秒前
脑洞疼应助紫色奶萨采纳,获得10
24秒前
迷途发布了新的文献求助10
24秒前
阿饼完成签到,获得积分10
24秒前
26秒前
26秒前
阿饼发布了新的文献求助30
27秒前
乐乐应助lings采纳,获得10
28秒前
jcd完成签到,获得积分10
30秒前
Faust发布了新的文献求助10
30秒前
31秒前
惜风完成签到 ,获得积分20
31秒前
Dingyiren完成签到,获得积分10
34秒前
Liao发布了新的文献求助10
37秒前
39秒前
一个小柑橘完成签到,获得积分10
41秒前
传奇3应助韩乐乐采纳,获得10
41秒前
42秒前
紫色奶萨发布了新的文献求助10
42秒前
44秒前
深情安青应助酷炫的友易采纳,获得10
44秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146415
求助须知:如何正确求助?哪些是违规求助? 2797811
关于积分的说明 7825766
捐赠科研通 2454165
什么是DOI,文献DOI怎么找? 1306196
科研通“疑难数据库(出版商)”最低求助积分说明 627666
版权声明 601503