Cooperative control of virtually coupled trains considering train-to-train communication cycle: a tube-based model predictive control approach

火车 模型预测控制 工程类 控制(管理) 管(容器) 汽车工程 模拟 控制工程 计算机科学 机械工程 人工智能 地图学 地理
作者
Бо Лю,Xuefang Li,Deqing Huang,Na Qin
出处
期刊:Vehicle System Dynamics [Informa]
卷期号:: 1-23
标识
DOI:10.1080/00423114.2024.2394127
摘要

In this paper, a distributed tube-based model predictive control (TMPC) method is proposed to address the cooperative control of virtually coupled high-speed train (HSTs), which consists of an optimisation control part and a feedback control part. The novelty of this work lies in its pioneering consideration of the inconsistency between the train-to-train (T2T) communication cycle and the train operation control cycle in the cooperative control of virtually coupled trains. Firstly, for the optimisation control part, a distributed MPC scheme is designed based on the nominal train dynamics model to address the cooperative control of trains with different initial states, state constraints and control input constraints. By solving the optimisation control problem of the MPC, the optimal control input sequence and operating state sequence of the train for the next T2T communication cycle can be obtained. Secondly, the recursive feasibility and convergence of the MPC are analysed theoretically. Thirdly, for the feedback control part, an adaptive feedback control law is designed based on the actual train dynamics model, auxiliary dynamic system (ADS) and neural network techniques. In the train operation control cycle, the feedback control part utilises the optimal state sequence from the MPC as a reference for feedback control to deal with the external disturbance and train dynamics modelling inaccuracy. Fourthly, it is theoretically proved that the actual operating state of the train can converge to a small region around the optimal state of the MPC in a finite time. Finally, the effectiveness of the proposed distributed cooperative control scheme is verified by simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
3秒前
温柔惜筠应助高高友桃采纳,获得10
5秒前
5秒前
小王小王发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
8秒前
苗大楚完成签到 ,获得积分10
10秒前
10秒前
ZDZ发布了新的文献求助10
11秒前
瓜瓜瓜咕发布了新的文献求助10
11秒前
QQQ关注了科研通微信公众号
11秒前
94line完成签到,获得积分10
11秒前
内向的青荷完成签到,获得积分10
11秒前
12秒前
LL完成签到 ,获得积分10
12秒前
薰硝壤应助cloud采纳,获得10
12秒前
loey发布了新的文献求助30
14秒前
烟花应助皮卡皮卡丘采纳,获得10
14秒前
科视完成签到,获得积分10
14秒前
华仔应助高薪采纳,获得10
14秒前
15秒前
15秒前
15秒前
Arundel完成签到,获得积分10
16秒前
拾柒完成签到 ,获得积分10
16秒前
16秒前
李爱国应助zhanghhsnow采纳,获得20
16秒前
16秒前
Akim应助可乐采纳,获得10
17秒前
研友_VZG7GZ应助宇麦达采纳,获得10
17秒前
Wilson完成签到 ,获得积分10
17秒前
ZDZ完成签到,获得积分20
18秒前
布丁仔发布了新的文献求助10
18秒前
高高友桃完成签到,获得积分10
18秒前
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136013
求助须知:如何正确求助?哪些是违规求助? 2786835
关于积分的说明 7779716
捐赠科研通 2443045
什么是DOI,文献DOI怎么找? 1298822
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870