Cooperative control of virtually coupled trains considering train-to-train communication cycle: a tube-based model predictive control approach

火车 模型预测控制 工程类 控制(管理) 管(容器) 汽车工程 模拟 控制工程 计算机科学 机械工程 人工智能 地图学 地理
作者
Бо Лю,Xuefang Li,Deqing Huang,Na Qin
出处
期刊:Vehicle System Dynamics [Informa]
卷期号:: 1-23
标识
DOI:10.1080/00423114.2024.2394127
摘要

In this paper, a distributed tube-based model predictive control (TMPC) method is proposed to address the cooperative control of virtually coupled high-speed train (HSTs), which consists of an optimisation control part and a feedback control part. The novelty of this work lies in its pioneering consideration of the inconsistency between the train-to-train (T2T) communication cycle and the train operation control cycle in the cooperative control of virtually coupled trains. Firstly, for the optimisation control part, a distributed MPC scheme is designed based on the nominal train dynamics model to address the cooperative control of trains with different initial states, state constraints and control input constraints. By solving the optimisation control problem of the MPC, the optimal control input sequence and operating state sequence of the train for the next T2T communication cycle can be obtained. Secondly, the recursive feasibility and convergence of the MPC are analysed theoretically. Thirdly, for the feedback control part, an adaptive feedback control law is designed based on the actual train dynamics model, auxiliary dynamic system (ADS) and neural network techniques. In the train operation control cycle, the feedback control part utilises the optimal state sequence from the MPC as a reference for feedback control to deal with the external disturbance and train dynamics modelling inaccuracy. Fourthly, it is theoretically proved that the actual operating state of the train can converge to a small region around the optimal state of the MPC in a finite time. Finally, the effectiveness of the proposed distributed cooperative control scheme is verified by simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助西内!卡Q因采纳,获得10
刚刚
刚刚
彬彬发布了新的文献求助10
1秒前
太叔捕完成签到,获得积分10
1秒前
高磊发布了新的文献求助10
2秒前
RH完成签到,获得积分10
2秒前
zhangzhen完成签到,获得积分10
2秒前
3秒前
科研通AI2S应助zfzf0422采纳,获得10
5秒前
Wendy1204发布了新的文献求助10
6秒前
6秒前
lydy1993完成签到,获得积分10
7秒前
8秒前
滴滴哒哒完成签到 ,获得积分10
8秒前
SciGPT应助波波玛奇朵采纳,获得10
10秒前
戏言121完成签到,获得积分10
10秒前
迷人的映雁完成签到,获得积分10
11秒前
11秒前
美丽的之双完成签到,获得积分10
12秒前
阿会完成签到,获得积分10
12秒前
wqm完成签到,获得积分10
13秒前
戏言121发布了新的文献求助10
14秒前
14秒前
15秒前
优雅的流沙完成签到 ,获得积分10
16秒前
猫的海完成签到,获得积分10
16秒前
16秒前
Eason Liu完成签到,获得积分0
17秒前
Wendy1204完成签到,获得积分20
17秒前
Hello应助654采纳,获得10
17秒前
咩咩羊完成签到,获得积分10
17秒前
21秒前
lianqing完成签到,获得积分10
21秒前
汉堡包应助科研通管家采纳,获得10
21秒前
领导范儿应助科研通管家采纳,获得10
22秒前
RC_Wang应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
所所应助科研通管家采纳,获得10
22秒前
FashionBoy应助科研通管家采纳,获得10
22秒前
赘婿应助科研通管家采纳,获得10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824