生物合成
羟基化
化学
抑制性突触后电位
一氧化氮
生物化学
IC50型
立体化学
酶
体外
生物
有机化学
神经科学
作者
Yanlong Yang,Huiping Yu,Xin‐Hua Hao,Yanli Gao,Yao Qin,Xiaoqing Li,Jing Wang
标识
DOI:10.1002/cbic.202400691
摘要
Panepoxydone is a natural NF‐кB inhibitor isolated from basidiomycetes belonging to the genus Panus and Lentinus. It is biosynthesized from prenylhydroquinone through successive hydroxylation, epoxidation, and reduction reactions. In this study, we establish an efficient precursor‐directed biosynthesis strategy for the structural expansion of panepoxydone based on its biosynthetic pathway. Supplementation of the panepoxydone‐producing strain, Panus rudis, with various prenylhydroquinone analogues enabled the production of fourteen previously undescribed panepoxydone derivatives, panepoxyquinoid A‐N (2−14). The obtained panepoxydone derivatives together with their parental molecules were evaluated for their inhibitory activity on LPS‐induced NO production in RAW 264.7 cells. Compounds 1, 5‐6, 10‐11, and 14‐15 displayed significant suppressive effects on LPS‐induced NO production with IC50 values ranging from 4.3 to 30.1 μM.
科研通智能强力驱动
Strongly Powered by AbleSci AI