已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Signed Curvature Graph Representation Learning of Brain Networks for Brain Age Estimation

计算机科学 曲率 人工智能 代表(政治) 图形 图论 模式识别(心理学) 理论计算机科学 数学 组合数学 几何学 政治学 政治 法学
作者
Jingming Li,Zhengyuan Lyu,Hu Yu,Si Fu,Ke Li,Yao Li,Xiaojuan Guo
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2024.3434473
摘要

Graph Neural Networks (GNNs) play a pivotal role in learning representations of brain networks for estimating brain age. However, the over-squashing impedes interactions between long-range nodes, hindering the ability of message-passing mechanism-based GNNs to learn the topological structure of brain networks. Graph rewiring methods and curvature GNNs have been proposed to alleviate over-squashing. However, most graph rewiring methods overlook node features and curvature GNNs neglect the geometric properties of signed curvature. In this study, a Signed Curvature GNN (SCGNN) was proposed to rewire the graph based on node features and curvature, and learn the representation of signed curvature. First, a Mutual Information Ollivier-Ricci Flow (MORF) was proposed to add connections in the neighborhood of edge with the minimal negative curvature based on the maximum mutual information between node features, improving the efficiency of information interaction between nodes. Then, a Signed Curvature Convolution (SCC) was proposed to aggregate node features based on positive and negative curvature, facilitating the model's ability to capture the complex topological structures of brain networks. Additionally, an Ollivier-Ricci Gradient Pooling (ORG-Pooling) was proposed to select the key nodes and topology structures by curvature gradient and attention mechanism, accurately obtaining the global representation for brain age estimation. Experiments conducted on six public datasets with structural magnetic resonance imaging (sMRI), spanning ages from 18 to 91 years, validate that our method achieves promising performance compared with existing methods. Furthermore, we employed the gaps between brain age and chronological age for identifying Alzheimer's Disease (AD), yielding the best classification performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助nenoaowu采纳,获得10
刚刚
1秒前
研友_VZG7GZ应助月月采纳,获得10
3秒前
毛豆应助hyhyhyhy采纳,获得10
4秒前
迷人的Jack发布了新的文献求助10
5秒前
搜集达人应助suxin采纳,获得10
5秒前
峰回路转发布了新的文献求助30
6秒前
简单小懒虫完成签到 ,获得积分10
11秒前
zebra完成签到 ,获得积分10
11秒前
orixero应助傲娇的大字奶采纳,获得10
12秒前
14秒前
科研通AI2S应助hyhyhyhy采纳,获得10
14秒前
迷人的Jack完成签到,获得积分20
14秒前
16秒前
17秒前
清新的音响完成签到 ,获得积分10
18秒前
19秒前
Hello应助mmyhn采纳,获得10
20秒前
脚踏实地呢完成签到 ,获得积分10
21秒前
suxin发布了新的文献求助10
21秒前
23秒前
23秒前
毛豆应助hyhyhyhy采纳,获得10
23秒前
马德里就思议完成签到,获得积分10
23秒前
月月发布了新的文献求助10
23秒前
zhang完成签到 ,获得积分10
27秒前
28秒前
29秒前
尼大王完成签到,获得积分10
30秒前
峰回路转完成签到,获得积分10
30秒前
zxy完成签到 ,获得积分10
32秒前
毛豆应助hyhyhyhy采纳,获得10
33秒前
suxin完成签到,获得积分20
33秒前
壮观溪流完成签到 ,获得积分10
34秒前
顾矜应助明亮无颜采纳,获得10
35秒前
Owen应助小文采纳,获得10
36秒前
40秒前
bazinga应助hyhyhyhy采纳,获得10
43秒前
43秒前
44秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310970
求助须知:如何正确求助?哪些是违规求助? 2943774
关于积分的说明 8516369
捐赠科研通 2619056
什么是DOI,文献DOI怎么找? 1431916
科研通“疑难数据库(出版商)”最低求助积分说明 664484
邀请新用户注册赠送积分活动 649777