已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Application of machine learning methodology for investigating the vibration behavior of functionally graded porous nanobeams

振动 多孔性 材料科学 计算机科学 复合材料 物理 声学
作者
Aiman Tariq,Büşra Uzun,Babür Deliktaş,Mustafa Özgür Yaylı
出处
期刊:Journal of Strain Analysis for Engineering Design [SAGE Publishing]
标识
DOI:10.1177/03093247241278391
摘要

This study presents a semi-analytical solution that can calculate the free vibration frequencies of functionally graded nanobeams with three distinct pore distributions under both deformable and rigid boundary conditions, based on nonlocal elasticity and Levinson beam theories. The novelty lies in the incorporation of transverse springs at both ends of porous functionally graded nanobeams and introducing a general eigenvalue problem dependent on the stiffness of these springs. This solution provides vibrational frequencies considering Levinson beam theory, non-local elasticity theory, spring stiffnesses, porosity coefficients, and temperature change. Additionally, the vibrational behavior of these porous nanobeams is explored through machine learning (ML) techniques. Four ML models namely artificial neural network (ANN), support vector regression (SVR), decision tree (DT), and extreme gradient boosting (XGB) are trained to predict the natural frequencies of nanobeams with varying pore distributions. The Sobol quasi-random space-filling method is employed to generate samples by altering input feature combinations for different porous nanobeam distributions. Model performance is evaluated using different performance indicators and visualization tools, with optimal hyperparameters determined via a Bayesian optimization algorithm. Results underscore the efficacy of ML models in predicting natural frequencies, with SVR and ANN demonstrating superior performance compared to XGB and DT. Notably, SVR and ANN exhibit exceptional R 2 values of 0.999, along with the lowest MAE, MAPE, and RMSE values among the models assessed. At the end of the study, the effects of various parameters on porous gold (Au) nanobeams using the solution of the presented eigenvalue problem are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
huyang发布了新的文献求助10
刚刚
xiaoyu1完成签到,获得积分10
3秒前
Zack完成签到,获得积分10
4秒前
jeff完成签到,获得积分10
5秒前
好好好发布了新的文献求助10
6秒前
bkagyin应助无聊的棉花糖采纳,获得10
6秒前
Strike发布了新的文献求助30
6秒前
维维完成签到,获得积分10
7秒前
7秒前
CaoJing完成签到 ,获得积分10
10秒前
11秒前
12秒前
Strange发布了新的文献求助10
12秒前
星辰大海应助Strike采纳,获得10
13秒前
ZJN完成签到,获得积分10
13秒前
14秒前
16秒前
boluo666完成签到 ,获得积分10
17秒前
huyang发布了新的文献求助10
19秒前
Strange完成签到,获得积分10
20秒前
甜甜的以筠完成签到 ,获得积分10
20秒前
ljc完成签到,获得积分10
21秒前
hi_traffic完成签到,获得积分10
23秒前
holi完成签到 ,获得积分10
24秒前
yuwen发布了新的文献求助10
26秒前
27秒前
小二郎应助好好好采纳,获得10
27秒前
song完成签到 ,获得积分10
28秒前
时梦冉完成签到 ,获得积分10
29秒前
29秒前
30秒前
车厘子完成签到 ,获得积分10
38秒前
lijiauyi1994完成签到,获得积分10
39秒前
地瓜地瓜完成签到 ,获得积分10
39秒前
落叶捎来讯息完成签到 ,获得积分10
40秒前
41秒前
41秒前
huyang发布了新的文献求助10
42秒前
Lily应助佳丽采纳,获得10
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968181
求助须知:如何正确求助?哪些是违规求助? 3513189
关于积分的说明 11166755
捐赠科研通 3248411
什么是DOI,文献DOI怎么找? 1794243
邀请新用户注册赠送积分活动 874924
科研通“疑难数据库(出版商)”最低求助积分说明 804629