Application of machine learning methodology for investigating the vibration behavior of functionally graded porous nanobeams

振动 多孔性 材料科学 计算机科学 复合材料 物理 声学
作者
Ata-ur-Rehman Tariq,Büşra Uzun,Babür Deliktaş,Mustafa Özgür Yaylı
出处
期刊:Journal of Strain Analysis for Engineering Design [SAGE]
标识
DOI:10.1177/03093247241278391
摘要

This study presents a semi-analytical solution that can calculate the free vibration frequencies of functionally graded nanobeams with three distinct pore distributions under both deformable and rigid boundary conditions, based on nonlocal elasticity and Levinson beam theories. The novelty lies in the incorporation of transverse springs at both ends of porous functionally graded nanobeams and introducing a general eigenvalue problem dependent on the stiffness of these springs. This solution provides vibrational frequencies considering Levinson beam theory, non-local elasticity theory, spring stiffnesses, porosity coefficients, and temperature change. Additionally, the vibrational behavior of these porous nanobeams is explored through machine learning (ML) techniques. Four ML models namely artificial neural network (ANN), support vector regression (SVR), decision tree (DT), and extreme gradient boosting (XGB) are trained to predict the natural frequencies of nanobeams with varying pore distributions. The Sobol quasi-random space-filling method is employed to generate samples by altering input feature combinations for different porous nanobeam distributions. Model performance is evaluated using different performance indicators and visualization tools, with optimal hyperparameters determined via a Bayesian optimization algorithm. Results underscore the efficacy of ML models in predicting natural frequencies, with SVR and ANN demonstrating superior performance compared to XGB and DT. Notably, SVR and ANN exhibit exceptional R 2 values of 0.999, along with the lowest MAE, MAPE, and RMSE values among the models assessed. At the end of the study, the effects of various parameters on porous gold (Au) nanobeams using the solution of the presented eigenvalue problem are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助魔幻小熊猫采纳,获得10
3秒前
科研通AI2S应助闪闪尔白采纳,获得10
3秒前
飞太难完成签到,获得积分10
4秒前
Hong完成签到,获得积分10
4秒前
完美世界应助zz采纳,获得10
5秒前
弈咖啡发布了新的文献求助10
6秒前
学习啊发布了新的文献求助10
10秒前
11秒前
田様应助炭小黑采纳,获得10
11秒前
EvaHo发布了新的文献求助10
13秒前
JamesPei应助小唐采纳,获得10
14秒前
吾系渣渣辉完成签到 ,获得积分10
18秒前
why完成签到,获得积分10
22秒前
科研通AI2S应助gulllluuuukk采纳,获得10
22秒前
22秒前
SU完成签到,获得积分10
23秒前
25秒前
27秒前
机智跳跳糖完成签到,获得积分10
28秒前
AJY发布了新的文献求助10
34秒前
35秒前
小米完成签到,获得积分10
36秒前
Le_Chiot发布了新的文献求助10
37秒前
38秒前
诗篇完成签到,获得积分10
38秒前
wb完成签到,获得积分10
39秒前
onehome完成签到,获得积分10
40秒前
cnspower发布了新的文献求助200
40秒前
zongzi12138完成签到,获得积分0
41秒前
Akim应助失眠的血茗采纳,获得10
41秒前
fifteen应助DO采纳,获得10
41秒前
liu应助Fox采纳,获得20
42秒前
小精灵发布了新的文献求助10
42秒前
领导范儿应助shawn采纳,获得10
45秒前
46秒前
49秒前
走四方应助Fox采纳,获得20
50秒前
51秒前
壮观以松发布了新的文献求助10
51秒前
wen完成签到 ,获得积分10
51秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164219
求助须知:如何正确求助?哪些是违规求助? 2814944
关于积分的说明 7907166
捐赠科研通 2474517
什么是DOI,文献DOI怎么找? 1317555
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228