Elevating logistics performance: harnessing the power of artificial intelligence in e-commerce

业务 功率(物理) 运营管理 产业组织 电子商务 营销 过程管理 知识管理 计算机科学 经济 万维网 物理 量子力学
作者
Gunjan Malhotra,Manjeet Kharub
出处
期刊:The International Journal of Logistics Management [Emerald Publishing Limited]
卷期号:36 (1): 290-321 被引量:27
标识
DOI:10.1108/ijlm-01-2024-0046
摘要

Purpose Artificial intelligence (AI) usage improves e-commerce logistics efficiency. However, many actors can play significant roles, such as supply chain consistency (SCC), last-mile logistics (LML) performance and collaboration and coordination among logistics firms. This study aims to assess how SCC and LML performance mediate and collaboration and coordination moderate the relationship between AI usage and logistics efficiency. Design/methodology/approach A structured questionnaire was used to collect the data. A total of 245 valid responses were received from Indian e-commerce businesses. The data were then analysed using AMOS v25 and structural equational modelling using SPSS for regression, PROCESS macro for mediation and moderated mediation analysis. Findings The findings show that AI usage independently impacts logistics efficiency, with SCC and last-mile delivery performance as mediating variables. Collaboration and coordination among logistic firms are also critical moderators in enhancing AI’s efficacy in logistic operations. The study findings suggest the integration of AI into logistic operations and provide implications to managers on the urgency of fostering a collaborative and synchronised environment to utilise the full potential of AI in e-commerce businesses. Originality/value This study not only contributes to the field of logistics theory by presenting empirical data on the various ramifications of AI but also offers practical guidance for logistics firms, particularly those operating in developing economies, on how to strategically employ AI to enhance operational efficiency and attain a competitive advantage in the era of e-commerce logistics in the digital age.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫喵喵完成签到,获得积分10
刚刚
jefflong发布了新的文献求助10
1秒前
2秒前
任性唇膏完成签到,获得积分10
2秒前
2秒前
王一生完成签到,获得积分10
2秒前
elizabeth339发布了新的文献求助50
2秒前
纤指细轻捻完成签到,获得积分10
4秒前
wanci应助wyt采纳,获得10
4秒前
Naturewoman发布了新的文献求助10
6秒前
鹿c3完成签到,获得积分10
6秒前
rgee完成签到,获得积分10
6秒前
桐桐应助jiangshanshan采纳,获得10
6秒前
光亮的楼房完成签到,获得积分10
8秒前
10秒前
10秒前
10秒前
changping应助划水小羊采纳,获得20
11秒前
小h完成签到 ,获得积分10
11秒前
情怀应助warmer采纳,获得10
12秒前
12秒前
12秒前
Dolbar发布了新的文献求助10
12秒前
14秒前
一心完成签到,获得积分10
14秒前
斯文败类应助Daisy采纳,获得10
15秒前
15秒前
健忘蘑菇发布了新的文献求助10
15秒前
chimchim发布了新的文献求助10
16秒前
aganer发布了新的文献求助20
17秒前
爆米花应助耿geng采纳,获得10
17秒前
花鸟风月evereo完成签到,获得积分10
17秒前
elizabeth339发布了新的文献求助50
18秒前
研友_La17wL完成签到,获得积分10
18秒前
GXY发布了新的文献求助10
19秒前
19秒前
123完成签到,获得积分10
19秒前
JETSTREAM完成签到,获得积分10
20秒前
丘比特应助科研通管家采纳,获得10
20秒前
CipherSage应助科研通管家采纳,获得10
20秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213989
求助须知:如何正确求助?哪些是违规求助? 4389639
关于积分的说明 13667469
捐赠科研通 4250894
什么是DOI,文献DOI怎么找? 2332289
邀请新用户注册赠送积分活动 1329887
关于科研通互助平台的介绍 1283580