亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Image all-in-one adverse weather removal via dynamic model weights generation

卷积(计算机科学) 卷积神经网络 特征(语言学) 代表(政治) 特征学习 模式识别(心理学) 人工智能 计算机科学 人工神经网络 数据挖掘 语言学 哲学 政治 政治学 法学
作者
Yecong Wan,Mingwen Shao,Yuanshuo Cheng,Wangmeng Zuo
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:302: 112324-112324
标识
DOI:10.1016/j.knosys.2024.112324
摘要

Restoring image under multiple weather conditions in an all-in-one fashion remains a formidable challenge due to images captured under different weather conditions exhibit different degradation characteristics and patterns. However, existing all-in-one adverse weather removal methods mainly focus on learning shared generic knowledge of multiple weather conditions via fixed network parameters, which fails to adjust for different instances to fit exclusive features characterization of specific weather conditions. To tackle this issue, we propose a novel dynamic weights generation network (DwGN) that can adaptively mine and extract instance-exclusive degradation features for different weather conditions via dynamically generated convolutional weights. Specifically, we first propose two fundamental dynamic weights convolutions, which can automatically generate optimal convolutional weights for distinct pending features via a lightweight yet efficient mapping layer. The predicted convolutional weights are then incorporated into the convolution operation to extract instance-exclusive features for different weather conditions. Building upon the dynamic weights convolutions, we further devise a tailored weight adaptive Transformer blocks (WATB) which consists of two core modules: half-dynamic multi-head cross-attention (HDMC) that performs exclusive-generic feature interaction, and half-dynamic feed-forward network (HDFN) that performs selected exclusive-generic feature transformation and aggregation. Considering communal features shared between different weather conditions (e.g., background representation), both HDMC and HDFN deploy only half of the dynamic weights convolutions for instance-exclusive feature characterization, while still deploying half of the static convolutions to characterize generic features. Through adaptive weight tuning, our DwGN can adaptively adapt to different weather scenarios and effectively capture the instance-exclusive degradation features, thus enjoying better flexibility and adaptability under all-in-one adverse weather removal. Extensive experiments demonstrate that our DwGN performs favorably against state-of-the-art algorithms. In particular, our proposed DwGN achieves the best PSNR and SSIM scores on all five tasks both in the task-specific setting and in the all-in-one setting. Furthermore, our method has shown consistent performance improvement in both real-world and high-level visual applications. The implementation code is available at https://github.com/Jeasco/DwGN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
21秒前
善学以致用应助渟柠采纳,获得10
43秒前
爱卿5271完成签到,获得积分0
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
打打应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
计划完成签到,获得积分10
1分钟前
wrl2023完成签到,获得积分10
2分钟前
2分钟前
渟柠发布了新的文献求助10
2分钟前
2分钟前
健忘鞋垫完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
芜湖发布了新的文献求助10
3分钟前
FashionBoy应助科研通管家采纳,获得10
3分钟前
ZanE完成签到,获得积分10
3分钟前
何何发布了新的文献求助10
3分钟前
3分钟前
4分钟前
万邦德完成签到,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
su发布了新的文献求助10
5分钟前
5分钟前
从来都不会放弃zr完成签到,获得积分10
5分钟前
w。发布了新的文献求助10
5分钟前
Ldq应助科研通管家采纳,获得10
5分钟前
情怀应助科研通管家采纳,获得10
5分钟前
learningu应助w。采纳,获得20
5分钟前
YWang应助w。采纳,获得20
5分钟前
su完成签到,获得积分10
5分钟前
xiaoshuai完成签到,获得积分10
5分钟前
6分钟前
汉堡包应助努力打个共采纳,获得10
6分钟前
让我康康发布了新的文献求助10
6分钟前
6分钟前
量子星尘发布了新的文献求助150
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5064470
求助须知:如何正确求助?哪些是违规求助? 4287518
关于积分的说明 13359099
捐赠科研通 4106033
什么是DOI,文献DOI怎么找? 2248371
邀请新用户注册赠送积分活动 1253912
关于科研通互助平台的介绍 1185234