亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Image all-in-one adverse weather removal via dynamic model weights generation

卷积(计算机科学) 卷积神经网络 特征(语言学) 代表(政治) 特征学习 模式识别(心理学) 人工智能 计算机科学 人工神经网络 数据挖掘 语言学 哲学 政治 政治学 法学
作者
Yecong Wan,Mingwen Shao,Yuanshuo Cheng,Wangmeng Zuo
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:302: 112324-112324
标识
DOI:10.1016/j.knosys.2024.112324
摘要

Restoring image under multiple weather conditions in an all-in-one fashion remains a formidable challenge due to images captured under different weather conditions exhibit different degradation characteristics and patterns. However, existing all-in-one adverse weather removal methods mainly focus on learning shared generic knowledge of multiple weather conditions via fixed network parameters, which fails to adjust for different instances to fit exclusive features characterization of specific weather conditions. To tackle this issue, we propose a novel dynamic weights generation network (DwGN) that can adaptively mine and extract instance-exclusive degradation features for different weather conditions via dynamically generated convolutional weights. Specifically, we first propose two fundamental dynamic weights convolutions, which can automatically generate optimal convolutional weights for distinct pending features via a lightweight yet efficient mapping layer. The predicted convolutional weights are then incorporated into the convolution operation to extract instance-exclusive features for different weather conditions. Building upon the dynamic weights convolutions, we further devise a tailored weight adaptive Transformer blocks (WATB) which consists of two core modules: half-dynamic multi-head cross-attention (HDMC) that performs exclusive-generic feature interaction, and half-dynamic feed-forward network (HDFN) that performs selected exclusive-generic feature transformation and aggregation. Considering communal features shared between different weather conditions (e.g., background representation), both HDMC and HDFN deploy only half of the dynamic weights convolutions for instance-exclusive feature characterization, while still deploying half of the static convolutions to characterize generic features. Through adaptive weight tuning, our DwGN can adaptively adapt to different weather scenarios and effectively capture the instance-exclusive degradation features, thus enjoying better flexibility and adaptability under all-in-one adverse weather removal. Extensive experiments demonstrate that our DwGN performs favorably against state-of-the-art algorithms. In particular, our proposed DwGN achieves the best PSNR and SSIM scores on all five tasks both in the task-specific setting and in the all-in-one setting. Furthermore, our method has shown consistent performance improvement in both real-world and high-level visual applications. The implementation code is available at https://github.com/Jeasco/DwGN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助科研通管家采纳,获得10
8秒前
烟消云散完成签到,获得积分10
11秒前
汉堡包应助梦梦采纳,获得10
26秒前
26秒前
Orange应助reerwt采纳,获得10
46秒前
annis完成签到,获得积分10
48秒前
52秒前
含蓄绿竹完成签到 ,获得积分10
1分钟前
1分钟前
reerwt发布了新的文献求助10
1分钟前
Liufgui应助sss采纳,获得10
1分钟前
梦梦完成签到,获得积分10
1分钟前
1分钟前
reerwt完成签到,获得积分20
1分钟前
1分钟前
陈元元K完成签到,获得积分10
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
2分钟前
梦梦发布了新的文献求助10
2分钟前
2分钟前
caca完成签到,获得积分0
2分钟前
科研通AI2S应助YYYCCCCC采纳,获得10
3分钟前
海鸥别叫了完成签到 ,获得积分10
3分钟前
云霞完成签到 ,获得积分10
3分钟前
朴素的山蝶完成签到 ,获得积分10
4分钟前
4分钟前
FashionBoy应助科研通管家采纳,获得10
4分钟前
Bugs完成签到,获得积分10
4分钟前
4分钟前
小八统治世界完成签到 ,获得积分10
4分钟前
tang完成签到,获得积分10
4分钟前
汉堡包应助舒服的觅夏采纳,获得10
4分钟前
suicone完成签到,获得积分10
5分钟前
zqq完成签到,获得积分0
5分钟前
5分钟前
归陌完成签到 ,获得积分10
5分钟前
5分钟前
mmyhn发布了新的文献求助10
5分钟前
5分钟前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3990045
求助须知:如何正确求助?哪些是违规求助? 3532108
关于积分的说明 11256354
捐赠科研通 3270943
什么是DOI,文献DOI怎么找? 1805146
邀请新用户注册赠送积分活动 882270
科研通“疑难数据库(出版商)”最低求助积分说明 809228