已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Image all-in-one adverse weather removal via dynamic model weights generation

卷积(计算机科学) 卷积神经网络 特征(语言学) 代表(政治) 特征学习 模式识别(心理学) 人工智能 计算机科学 人工神经网络 数据挖掘 政治学 语言学 政治 哲学 法学
作者
Yecong Wan,Mingwen Shao,Yuanshuo Cheng,Wangmeng Zuo
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:302: 112324-112324
标识
DOI:10.1016/j.knosys.2024.112324
摘要

Restoring image under multiple weather conditions in an all-in-one fashion remains a formidable challenge due to images captured under different weather conditions exhibit different degradation characteristics and patterns. However, existing all-in-one adverse weather removal methods mainly focus on learning shared generic knowledge of multiple weather conditions via fixed network parameters, which fails to adjust for different instances to fit exclusive features characterization of specific weather conditions. To tackle this issue, we propose a novel dynamic weights generation network (DwGN) that can adaptively mine and extract instance-exclusive degradation features for different weather conditions via dynamically generated convolutional weights. Specifically, we first propose two fundamental dynamic weights convolutions, which can automatically generate optimal convolutional weights for distinct pending features via a lightweight yet efficient mapping layer. The predicted convolutional weights are then incorporated into the convolution operation to extract instance-exclusive features for different weather conditions. Building upon the dynamic weights convolutions, we further devise a tailored weight adaptive Transformer blocks (WATB) which consists of two core modules: half-dynamic multi-head cross-attention (HDMC) that performs exclusive-generic feature interaction, and half-dynamic feed-forward network (HDFN) that performs selected exclusive-generic feature transformation and aggregation. Considering communal features shared between different weather conditions (e.g., background representation), both HDMC and HDFN deploy only half of the dynamic weights convolutions for instance-exclusive feature characterization, while still deploying half of the static convolutions to characterize generic features. Through adaptive weight tuning, our DwGN can adaptively adapt to different weather scenarios and effectively capture the instance-exclusive degradation features, thus enjoying better flexibility and adaptability under all-in-one adverse weather removal. Extensive experiments demonstrate that our DwGN performs favorably against state-of-the-art algorithms. In particular, our proposed DwGN achieves the best PSNR and SSIM scores on all five tasks both in the task-specific setting and in the all-in-one setting. Furthermore, our method has shown consistent performance improvement in both real-world and high-level visual applications. The implementation code is available at https://github.com/Jeasco/DwGN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水菜泽子发布了新的文献求助10
刚刚
稳重的宛丝完成签到 ,获得积分10
刚刚
1秒前
1秒前
王宝强的滴滴完成签到,获得积分10
4秒前
yang发布了新的文献求助10
8秒前
10秒前
感性的夜玉完成签到,获得积分10
11秒前
ZZR发布了新的文献求助10
13秒前
16秒前
yulia完成签到 ,获得积分10
16秒前
好好看文献完成签到,获得积分10
20秒前
21秒前
权小夏完成签到 ,获得积分10
22秒前
顾矜应助decade采纳,获得10
26秒前
29秒前
ZZR完成签到,获得积分20
29秒前
务实白开水完成签到,获得积分10
31秒前
古人完成签到,获得积分10
35秒前
徐世深白发布了新的文献求助10
35秒前
injuly完成签到,获得积分10
36秒前
tjnksy完成签到,获得积分10
37秒前
在水一方应助科研通管家采纳,获得10
42秒前
李金文应助科研通管家采纳,获得10
42秒前
CipherSage应助科研通管家采纳,获得10
42秒前
orixero应助科研通管家采纳,获得10
42秒前
科研通AI6应助科研通管家采纳,获得10
42秒前
李金文应助科研通管家采纳,获得10
42秒前
星辰大海应助科研通管家采纳,获得10
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
NexusExplorer应助科研通管家采纳,获得10
43秒前
852应助科研通管家采纳,获得20
43秒前
风趣的冬日完成签到 ,获得积分10
46秒前
李健应助饶清萍采纳,获得10
46秒前
47秒前
徐世深白完成签到,获得积分20
54秒前
英姑应助coollz采纳,获得10
57秒前
59秒前
59秒前
英俊的铭应助努力的蜗牛采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610489
求助须知:如何正确求助?哪些是违规求助? 4016443
关于积分的说明 12435173
捐赠科研通 3698029
什么是DOI,文献DOI怎么找? 2039187
邀请新用户注册赠送积分活动 1072053
科研通“疑难数据库(出版商)”最低求助积分说明 955729