Image all-in-one adverse weather removal via dynamic model weights generation

卷积(计算机科学) 卷积神经网络 特征(语言学) 代表(政治) 特征学习 模式识别(心理学) 人工智能 计算机科学 人工神经网络 数据挖掘 语言学 哲学 政治 政治学 法学
作者
Yecong Wan,Mingwen Shao,Yuanshuo Cheng,Wangmeng Zuo
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:302: 112324-112324
标识
DOI:10.1016/j.knosys.2024.112324
摘要

Restoring image under multiple weather conditions in an all-in-one fashion remains a formidable challenge due to images captured under different weather conditions exhibit different degradation characteristics and patterns. However, existing all-in-one adverse weather removal methods mainly focus on learning shared generic knowledge of multiple weather conditions via fixed network parameters, which fails to adjust for different instances to fit exclusive features characterization of specific weather conditions. To tackle this issue, we propose a novel dynamic weights generation network (DwGN) that can adaptively mine and extract instance-exclusive degradation features for different weather conditions via dynamically generated convolutional weights. Specifically, we first propose two fundamental dynamic weights convolutions, which can automatically generate optimal convolutional weights for distinct pending features via a lightweight yet efficient mapping layer. The predicted convolutional weights are then incorporated into the convolution operation to extract instance-exclusive features for different weather conditions. Building upon the dynamic weights convolutions, we further devise a tailored weight adaptive Transformer blocks (WATB) which consists of two core modules: half-dynamic multi-head cross-attention (HDMC) that performs exclusive-generic feature interaction, and half-dynamic feed-forward network (HDFN) that performs selected exclusive-generic feature transformation and aggregation. Considering communal features shared between different weather conditions (e.g., background representation), both HDMC and HDFN deploy only half of the dynamic weights convolutions for instance-exclusive feature characterization, while still deploying half of the static convolutions to characterize generic features. Through adaptive weight tuning, our DwGN can adaptively adapt to different weather scenarios and effectively capture the instance-exclusive degradation features, thus enjoying better flexibility and adaptability under all-in-one adverse weather removal. Extensive experiments demonstrate that our DwGN performs favorably against state-of-the-art algorithms. In particular, our proposed DwGN achieves the best PSNR and SSIM scores on all five tasks both in the task-specific setting and in the all-in-one setting. Furthermore, our method has shown consistent performance improvement in both real-world and high-level visual applications. The implementation code is available at https://github.com/Jeasco/DwGN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
liuyf完成签到 ,获得积分10
2秒前
4秒前
4秒前
YJ888发布了新的文献求助10
4秒前
今后应助Lu采纳,获得10
4秒前
EED发布了新的文献求助10
4秒前
88C真是太神奇啦完成签到,获得积分10
5秒前
5秒前
Rondab应助shuyi采纳,获得30
6秒前
酷酷飞烟发布了新的文献求助10
7秒前
8秒前
在水一方应助故意的靳采纳,获得50
9秒前
11秒前
忧郁的鱿鱼完成签到,获得积分10
11秒前
JamesPei应助lm采纳,获得10
13秒前
xww完成签到,获得积分10
13秒前
隐形曼青应助忐忑的阑香采纳,获得10
14秒前
秋半梦发布了新的文献求助10
15秒前
slp完成签到,获得积分20
22秒前
秋半梦完成签到,获得积分10
25秒前
bububusbu完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助10
26秒前
我是老大应助TTm采纳,获得20
27秒前
科研通AI5应助Bressanone采纳,获得10
27秒前
坡坡大王发布了新的文献求助10
28秒前
华仔应助anna采纳,获得10
32秒前
carlin完成签到,获得积分10
34秒前
白子双完成签到,获得积分10
38秒前
FXQ123_范完成签到,获得积分10
38秒前
传奇3应助ran123456采纳,获得30
39秒前
keyan_baby完成签到,获得积分20
40秒前
42秒前
坡坡大王完成签到,获得积分10
43秒前
钱宇成关注了科研通微信公众号
43秒前
44秒前
Zayro完成签到,获得积分10
45秒前
46秒前
自信雅琴发布了新的文献求助10
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105