Exploring Shared Genetic Features and Molecular Mechanisms between Non-Alcoholic Steatohepatitis and Hepatocellular Carcinoma through Bioinformatics

肝细胞癌 生物 微卫星不稳定性 癌变 生物标志物 癌症研究 基因 肿瘤科 内科学 生物信息学 医学 遗传学 微卫星 等位基因
作者
ChengLong Tian,Zheng Li,Qinlong Liu
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science]
卷期号:28
标识
DOI:10.2174/0113862073323011240912072514
摘要

Background: Hepatocellular Carcinoma (HCC) is one of the most common malignant tumors in the world, characterized by high incidence, high malignancy, and low survival rate. Currently, 1/4 of adults in the world suffer from Non-Alcoholic Fatty Liver Disease (NAFLD), with an incidence rate of 27% in Asia. Methods: We used TCGA and GEO public database data sets to conduct weighted gene coexpression network analysis to identify relevant gene modules, defined the intersection of tumorigenesis-related modules and NASH development-related modules as shared genes, and then used single-factor Cox, LASSO, and multivariate Cox regression analysis screened out core shared genes and verified their prognostic value. We further investigated the relationship between core shared genes and immune infiltration, tumor mutational load, and drug sensitivity. Finally, RT-qPCR was used to verify its mRNA expression in different cell lines. Results: We identified Karyopherin α 2 (KPNA2) as the core shared gene between NASH and HCC. Patients were divided into low-risk groups and high-risk groups based on the expression of KPNA2. The prognosis of the low-risk group was significantly better than that of the highrisk group. Furthermore, we found significant differences in tumor immune cell infiltration, somatic mutations, microsatellite instability, and drug sensitivity between different expression groups. Conclusion: There are very few studies on the molecular mechanism of the relationship between NAFLD and HCC. Our study demonstrates that KPNA2 is a potential therapeutic target and immune-related biomarker for patients with NAFLD and HCC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
那种发布了新的文献求助10
1秒前
1秒前
鱼鱼鱼完成签到,获得积分10
1秒前
1秒前
纯真的晓啸完成签到,获得积分10
2秒前
2秒前
2秒前
sinFlee完成签到,获得积分10
2秒前
3秒前
小白菜完成签到,获得积分10
4秒前
4秒前
scq发布了新的文献求助10
5秒前
sinFlee发布了新的文献求助10
5秒前
江峰发布了新的文献求助10
5秒前
6秒前
威康宇宙发布了新的文献求助10
6秒前
Yato发布了新的文献求助10
6秒前
ThoracicJJP发布了新的文献求助10
6秒前
6秒前
qqqq发布了新的文献求助10
7秒前
眯眯眼的衬衫应助小小采纳,获得10
7秒前
7秒前
Zn应助无情的白桃采纳,获得10
7秒前
55555发布了新的文献求助10
8秒前
研妍发布了新的文献求助10
8秒前
桐桐应助燕燕于飞采纳,获得10
8秒前
8秒前
8秒前
10秒前
Claire完成签到 ,获得积分10
11秒前
11秒前
zhizhuim完成签到,获得积分20
13秒前
13秒前
15秒前
一蓑烟雨任平生应助阿甘采纳,获得10
16秒前
zyb发布了新的文献求助10
17秒前
科研通AI5应助wyxdsb采纳,获得10
19秒前
乐乐应助梁可可采纳,获得10
19秒前
温柔晓刚完成签到,获得积分10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526037
求助须知:如何正确求助?哪些是违规求助? 3106453
关于积分的说明 9280410
捐赠科研通 2804080
什么是DOI,文献DOI怎么找? 1539215
邀请新用户注册赠送积分活动 716511
科研通“疑难数据库(出版商)”最低求助积分说明 709472