Anchor-based fast spectral ensemble clustering

计算机科学 聚类分析 光谱聚类 数据挖掘 人工智能 模式识别(心理学)
作者
Runxin Zhang,S Hang,Zhensheng Sun,Feiping Nie,Rong Wang,Xuelong Li
出处
期刊:Information Fusion [Elsevier]
卷期号:113: 102587-102587 被引量:9
标识
DOI:10.1016/j.inffus.2024.102587
摘要

Ensemble clustering can obtain better and more robust results by fusing multiple base clusterings, which has received extensive attention. Although many representative algorithms have emerged in recent years, this field still has two tricky problems. First, spectral clustering can identify clusters of arbitrary shapes, but the high time and space complexity limit its application in generating base clusterings. Most existing algorithms utilize k-means to generate base clusterings, and the clustering effect on nonlinearly separable datasets needs further improvement. Second, ensemble clustering algorithms should generate multiple base clusterings. Even if low-complexity algorithms are applied, the running time is also long, which seriously affects the application of ensemble clustering algorithms on large-scale datasets. To tackle these problems, we propose a fast K-nearest neighbors approximation method, construct an anchor graph to approximate the similarity matrix, and use singular value decomposition (SVD) instead of eigenvalue decomposition (EVD) to reduce the time and space complexity of conventional spectral clustering. At the same time, we obtain multiple base clusterings by running spectral embedding once. Finally, we convert these base clusterings into a bipartite graph and use transfer cut to get the final clustering results. The proposed algorithms significantly reduce the running time of ensemble clustering. Experimental results on large-scale datasets fully prove the efficiency and superiority of our proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助寒冷的箴采纳,获得10
1秒前
2秒前
3秒前
YU完成签到,获得积分10
4秒前
NGC发布了新的文献求助10
4秒前
端庄的妙菱完成签到,获得积分10
4秒前
4秒前
6秒前
香菜芋头完成签到,获得积分10
6秒前
完美世界应助eijgnij采纳,获得10
6秒前
WB发布了新的文献求助10
7秒前
行走人生完成签到,获得积分10
7秒前
思源应助jagger采纳,获得10
8秒前
9秒前
YU发布了新的文献求助10
9秒前
xiaohui发布了新的文献求助10
9秒前
夹心发布了新的文献求助10
9秒前
刻苦的长颈鹿完成签到,获得积分10
10秒前
体贴雪碧发布了新的文献求助10
10秒前
一只猪完成签到,获得积分10
10秒前
11秒前
111完成签到,获得积分20
11秒前
Ava应助WB采纳,获得10
13秒前
14秒前
14秒前
魔幻诗兰完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
stellc完成签到,获得积分10
15秒前
15秒前
祝你开心发布了新的文献求助10
16秒前
追寻宛海完成签到,获得积分10
17秒前
KKK发布了新的文献求助10
18秒前
18秒前
18秒前
19秒前
迷人静白完成签到,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901