In today's world, heart disease threatens human life owing to higher mortality and morbidity across the globe. The earlier prediction of heart disease engenders interoperability for the treatment of patients and offers better diagnostic recommendations from medical professionals. However, the existing machine learning classifiers suffer from computational complexity and overfitting problems, which reduces the classification accuracy of the diagnostic system. To address these constraints, this work proposes a new hybrid optimization algorithm to improve the classification accuracy and optimize computation time in smart healthcare applications. Primarily, the optimal features are selected through the hybrid Arithmetic Optimization and Inter-Twinned Mutation-Based Harris Hawk Optimization (AITH