CAISeg: A Clustering-Aided Interactive Network for Lesion Segmentation in 3D Medical Imaging

计算机科学 聚类分析 医学影像学 人工智能 分割 图像分割 计算机视觉 模式识别(心理学)
作者
Yukang Sun,Shujun Zhang,Jinsong Li,Qi Han,Yuhua Qin
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2024.3467279
摘要

Accurate lesion segmentation in medical imaging is critical for medical diagnosis and treatment. Lesions' diverse and heterogeneous characteristics often present a distinct long-tail distribution, posing difficulties for automatic methods. Currently, interactive segmentation approaches have shown promise in improving accuracy, but still struggle to deal with tail features. This triggers a demand of effective utilizing strategies of user interaction. To this end, we propose a novel point-based interactive segmentation model called Clustering-Aided Interactive Segmentation Network (CAISeg) in 3D medical imaging. A customized Interaction-Guided Module (IGM) adopts the concept of clustering to capture features that are semantically similar to interaction points. These clustered features are then mapped to the head regions of the prompted category to facilitate more precise classification. Meanwhile, we put forward a Focus Guided Loss function to grant the network an inductive bias towards user interaction through assigning higher weights to voxels closer to the prompted points, thereby improving the responsiveness efficiency to user guidance. Evaluation across brain tumor, colon cancer, lung cancer, and pancreas cancer segmentation tasks show CAISeg's superiority over the state-of-the-art methods. It outperforms the fully automated segmentation models in accuracy, and achieves results comparable to or better than those of the leading point-based interactive methods while requiring fewer prompt points. Furthermore, we discover that CAISeg possesses good interpretability at various stages, which endows CAISeg with potential clinical application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
coesite发布了新的文献求助10
1秒前
1秒前
小王同志完成签到,获得积分10
1秒前
丘比特应助上善若水采纳,获得10
1秒前
默默的素阴完成签到 ,获得积分10
1秒前
1秒前
Ava应助舌尖上的足疗采纳,获得30
2秒前
楚江南发布了新的文献求助20
3秒前
gaoyunfeng发布了新的文献求助10
4秒前
5秒前
5秒前
xiaolan完成签到,获得积分20
6秒前
zyx发布了新的文献求助10
6秒前
坦率的匪发布了新的文献求助10
6秒前
8秒前
SciGPT应助LD采纳,获得10
8秒前
8秒前
8秒前
ludong_0应助Alpineref采纳,获得10
9秒前
搜集达人应助震动的雪卉采纳,获得30
10秒前
虾仁发布了新的文献求助10
10秒前
爱吃猫的鱼完成签到,获得积分10
11秒前
楚江南完成签到,获得积分10
11秒前
无花果应助陳LF采纳,获得10
11秒前
ED应助sympurity采纳,获得10
11秒前
zhiyu完成签到,获得积分10
11秒前
coesite完成签到,获得积分10
11秒前
大模型应助Harish采纳,获得10
12秒前
mint完成签到,获得积分10
12秒前
科研張发布了新的文献求助30
12秒前
余俊杰完成签到 ,获得积分10
12秒前
12秒前
龙抬头发布了新的文献求助10
13秒前
ludong_0应助土豆··采纳,获得10
13秒前
14秒前
14秒前
yookia应助aiyowei采纳,获得20
14秒前
15秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958299
求助须知:如何正确求助?哪些是违规求助? 3504528
关于积分的说明 11118735
捐赠科研通 3235777
什么是DOI,文献DOI怎么找? 1788506
邀请新用户注册赠送积分活动 871225
科研通“疑难数据库(出版商)”最低求助积分说明 802600