CAISeg: A Clustering-Aided Interactive Network for Lesion Segmentation in 3D Medical Imaging

计算机科学 聚类分析 医学影像学 人工智能 分割 图像分割 计算机视觉 模式识别(心理学)
作者
Yukang Sun,Shujun Zhang,Jinsong Li,Qi Han,Yuhua Qin
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2024.3467279
摘要

Accurate lesion segmentation in medical imaging is critical for medical diagnosis and treatment. Lesions' diverse and heterogeneous characteristics often present a distinct long-tail distribution, posing difficulties for automatic methods. Currently, interactive segmentation approaches have shown promise in improving accuracy, but still struggle to deal with tail features. This triggers a demand of effective utilizing strategies of user interaction. To this end, we propose a novel point-based interactive segmentation model called Clustering-Aided Interactive Segmentation Network (CAISeg) in 3D medical imaging. A customized Interaction-Guided Module (IGM) adopts the concept of clustering to capture features that are semantically similar to interaction points. These clustered features are then mapped to the head regions of the prompted category to facilitate more precise classification. Meanwhile, we put forward a Focus Guided Loss function to grant the network an inductive bias towards user interaction through assigning higher weights to voxels closer to the prompted points, thereby improving the responsiveness efficiency to user guidance. Evaluation across brain tumor, colon cancer, lung cancer, and pancreas cancer segmentation tasks show CAISeg's superiority over the state-of-the-art methods. It outperforms the fully automated segmentation models in accuracy, and achieves results comparable to or better than those of the leading point-based interactive methods while requiring fewer prompt points. Furthermore, we discover that CAISeg possesses good interpretability at various stages, which endows CAISeg with potential clinical application value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力云朵发布了新的文献求助20
1秒前
kokodayour完成签到,获得积分10
5秒前
睡到人间煮饭时完成签到 ,获得积分10
13秒前
可耐的青雪完成签到 ,获得积分10
17秒前
我喜欢下雪完成签到,获得积分20
22秒前
独行侠完成签到,获得积分10
24秒前
开放又亦完成签到 ,获得积分10
26秒前
缥缈的闭月完成签到,获得积分10
26秒前
liu6677完成签到 ,获得积分10
29秒前
daniel完成签到,获得积分10
31秒前
科研小笨猪完成签到,获得积分10
32秒前
酷波er应助糯米团子采纳,获得30
33秒前
小海豚完成签到 ,获得积分10
33秒前
淡定的月半完成签到,获得积分10
35秒前
老实怀蝶完成签到,获得积分10
39秒前
雪流星完成签到 ,获得积分10
40秒前
leolee完成签到 ,获得积分10
41秒前
43秒前
44秒前
最美夕阳红完成签到,获得积分10
46秒前
49秒前
科研民工完成签到,获得积分10
50秒前
WHAT0217完成签到 ,获得积分20
51秒前
科研通AI2S应助liu6677采纳,获得10
52秒前
leolee完成签到 ,获得积分10
52秒前
yxq完成签到 ,获得积分10
56秒前
CipherSage应助炙热的念柏采纳,获得10
57秒前
甜甜醉波完成签到,获得积分10
1分钟前
lim完成签到 ,获得积分10
1分钟前
小赵完成签到,获得积分10
1分钟前
江雁完成签到,获得积分10
1分钟前
WHAT0217发布了新的文献求助30
1分钟前
蜗牛二世完成签到 ,获得积分10
1分钟前
大力云朵完成签到,获得积分10
1分钟前
欢呼凡英完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
达蒙璃完成签到 ,获得积分0
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339148
求助须知:如何正确求助?哪些是违规求助? 2967059
关于积分的说明 8628100
捐赠科研通 2646545
什么是DOI,文献DOI怎么找? 1449297
科研通“疑难数据库(出版商)”最低求助积分说明 671343
邀请新用户注册赠送积分活动 660176