Design Element Aware Poster Layout Generation

计算机科学 要素(刑法) 计算机体系结构 政治学 法学
作者
Yinan Li,Jia Chen,Yin Bai,Jia Cheng,Jun Lei
标识
DOI:10.1145/3627673.3679557
摘要

Despite the recent significant advancements in poster layout generation, existing works are mainly unaware of the given design elements (i.e., text, logo, and underlay), which leads to undesirable layouts or visual artifacts. The visual artifacts we refer to include (1) improper sizes, e.g., placing a short piece of text into a large textbox or long texts into small text boxes, and (2) image distortion, e.g., the stretched logo in Fig. 1. To advance research in this field, we propose a new design-element aware poster layout generation task, which require the generated layouts to not only have harmonic relationships but also fit well with the design elements. To address this task, we propose Design Element aware Transformer (DET), an encoder-decoder based transformer network, to generate reasonable layouts that fit not only the background images but also the design elements. The encoder extracts a fine-grained multi-scale representation from the background image and its saliency map. The decoder receives the background features and produces layouts conditioned on the content and desired sizes of the design elements. Adopting the multi-scale representation and the deformable attention in both the encoder and decoder enables our method to accurately understand/generate the spatial relationships between the background objects and design elements. We adapted three public poster layout generation datasets to fit our task and conducted experiments on them. In the meantime, we propose a new evaluation metric called AspDiff to measure whether the generated layout matches the given design elements. Quantitative and qualitative evaluation on three datasets demonstrates that DET yields superior results compared to other layout generation methods. Our code and datasets will be released.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无色热带鱼完成签到,获得积分10
1秒前
1秒前
Lucas应助PiPiBoQAQ采纳,获得10
1秒前
Marita发布了新的文献求助10
1秒前
2秒前
小吉麻麻完成签到,获得积分10
3秒前
3秒前
阿九发布了新的文献求助10
4秒前
4秒前
6秒前
无花果应助愉快乐蓉采纳,获得10
6秒前
无色热带鱼发布了新的文献求助200
6秒前
7秒前
7秒前
Marita完成签到,获得积分10
9秒前
山茶发布了新的文献求助10
9秒前
ED发布了新的文献求助200
10秒前
YXR完成签到,获得积分10
10秒前
acheeee发布了新的文献求助10
11秒前
12秒前
Hello应助企鹅乌云采纳,获得10
12秒前
星辰大海应助lxh采纳,获得10
12秒前
13秒前
14秒前
薛珊珊发布了新的文献求助10
14秒前
15秒前
科研狗完成签到,获得积分10
17秒前
整齐红酒发布了新的文献求助10
17秒前
18秒前
18秒前
18秒前
lsy发布了新的文献求助10
19秒前
20秒前
20秒前
21秒前
22秒前
22秒前
山茶完成签到,获得积分10
22秒前
乐乐应助科研狗采纳,获得10
22秒前
23秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842039
求助须知:如何正确求助?哪些是违规求助? 3384234
关于积分的说明 10533093
捐赠科研通 3104526
什么是DOI,文献DOI怎么找? 1709663
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773953