Examining Tongue Movement Intentions in EEG-Based BCI with Machine and Deep Learning: An Approach for Dysphagia Rehabilitation

吞咽困难 脑-机接口 康复 脑电图 舌头 运动(音乐) 物理医学与康复 计算机科学 人工智能 心理学 认知心理学 医学 神经科学 哲学 外科 病理 美学
作者
Sevgi Gökçe Aslan,Bülent Yılmaz
出处
期刊:The eurobiotech journal [De Gruyter]
卷期号:8 (4): 176-183 被引量:1
标识
DOI:10.2478/ebtj-2024-0017
摘要

Abstract Dysphagia, a common swallowing disorder particularly prevalent among older adults and often associated with neurological conditions, significantly affects individuals’ quality of life by negatively impacting their eating habits, physical health, and social interactions. This study investigates the potential of brain-computer interface (BCI) technologies in dysphagia rehabilitation, focusing specifically on motor imagery paradigms based on EEG signals and integration with machine learning and deep learning methods for tongue movement. Traditional machine learning classifiers, such as K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Tree, Naive Bayes, Random Forest, AdaBoost, Bagging, and Kernel were employed in discrimination of rest and imagination phases of EEG signals obtained from 30 healthy subjects. Scalogram images obtained using continuous wavelet transform of EEG signals corresponding to the rest and imagination phases of the experiment were used as the input images to the CNN architecture. As a result, KNN (79.4%) and SVM (63.4%) exhibited lower accuracy rates compared to ensemble methods like AdaBoost, Bagging, and Random Forest, all achieving high accuracy rates of 99.8%. These ensemble techniques proved to be highly effective in handling complex EEG datasets, particularly in distinguishing between rest and imagination phases. Furthermore, the deep learning approach, utilizing CNN and Continuous Wavelet Transform (CWT), achieved an accuracy of 83%, highlighting its potential in analyzing motor imagery data. Overall, this study demonstrates the promising role of BCI technologies and advanced machine learning techniques, especially ensemble and deep learning methods, in improving outcomes for dysphagia rehabilitation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Audrey完成签到 ,获得积分10
1秒前
科研通AI2S应助乔心采纳,获得10
1秒前
无花果应助清森采纳,获得10
1秒前
Hale完成签到,获得积分0
2秒前
leeleetyo完成签到,获得积分10
3秒前
清纯小奶绿完成签到,获得积分20
4秒前
情怀应助香橙采纳,获得10
5秒前
水木应助blind采纳,获得10
6秒前
笨笨十三完成签到 ,获得积分10
6秒前
负责从丹完成签到,获得积分20
7秒前
7秒前
7秒前
斜杠小猪发布了新的文献求助10
8秒前
李键刚完成签到 ,获得积分0
8秒前
Aglaia发布了新的文献求助20
8秒前
在水一方应助忧虑的以菱采纳,获得10
9秒前
HCLonely应助kunkun采纳,获得10
9秒前
luoxijixian完成签到,获得积分20
10秒前
mjr完成签到,获得积分10
10秒前
丘比特应助YOUNG-M采纳,获得10
12秒前
半山发布了新的文献求助10
13秒前
隐形半烟应助soosoo采纳,获得10
13秒前
跳跃富发布了新的文献求助10
14秒前
dai发布了新的文献求助10
14秒前
15秒前
16秒前
wenhao完成签到,获得积分10
17秒前
17秒前
17秒前
百里一一发布了新的文献求助50
20秒前
22秒前
小跳蚤发布了新的文献求助10
23秒前
23秒前
爆米花应助YX采纳,获得10
24秒前
慧敏发布了新的文献求助10
26秒前
拼搏的狗完成签到,获得积分10
26秒前
66完成签到,获得积分10
26秒前
昭谏发布了新的文献求助10
28秒前
闪闪发布了新的文献求助30
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314019
求助须知:如何正确求助?哪些是违规求助? 2946434
关于积分的说明 8530073
捐赠科研通 2622079
什么是DOI,文献DOI怎么找? 1434341
科研通“疑难数据库(出版商)”最低求助积分说明 665205
邀请新用户注册赠送积分活动 650792