Examining Tongue Movement Intentions in EEG-Based BCI with Machine and Deep Learning: An Approach for Dysphagia Rehabilitation

吞咽困难 脑-机接口 康复 脑电图 舌头 运动(音乐) 物理医学与康复 计算机科学 人工智能 心理学 认知心理学 医学 神经科学 哲学 外科 病理 美学
作者
Sevgi Gökçe Aslan,Bülent Yılmaz
出处
期刊:The eurobiotech journal [De Gruyter]
卷期号:8 (4): 176-183 被引量:1
标识
DOI:10.2478/ebtj-2024-0017
摘要

Abstract Dysphagia, a common swallowing disorder particularly prevalent among older adults and often associated with neurological conditions, significantly affects individuals’ quality of life by negatively impacting their eating habits, physical health, and social interactions. This study investigates the potential of brain-computer interface (BCI) technologies in dysphagia rehabilitation, focusing specifically on motor imagery paradigms based on EEG signals and integration with machine learning and deep learning methods for tongue movement. Traditional machine learning classifiers, such as K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Tree, Naive Bayes, Random Forest, AdaBoost, Bagging, and Kernel were employed in discrimination of rest and imagination phases of EEG signals obtained from 30 healthy subjects. Scalogram images obtained using continuous wavelet transform of EEG signals corresponding to the rest and imagination phases of the experiment were used as the input images to the CNN architecture. As a result, KNN (79.4%) and SVM (63.4%) exhibited lower accuracy rates compared to ensemble methods like AdaBoost, Bagging, and Random Forest, all achieving high accuracy rates of 99.8%. These ensemble techniques proved to be highly effective in handling complex EEG datasets, particularly in distinguishing between rest and imagination phases. Furthermore, the deep learning approach, utilizing CNN and Continuous Wavelet Transform (CWT), achieved an accuracy of 83%, highlighting its potential in analyzing motor imagery data. Overall, this study demonstrates the promising role of BCI technologies and advanced machine learning techniques, especially ensemble and deep learning methods, in improving outcomes for dysphagia rehabilitation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
聪明煎蛋完成签到,获得积分10
1秒前
Orange应助外向的含羞草采纳,获得10
1秒前
1秒前
和和发布了新的文献求助10
1秒前
1秒前
Shine完成签到,获得积分10
2秒前
天才罗发布了新的文献求助10
3秒前
虚心发布了新的文献求助10
3秒前
xiucz发布了新的文献求助10
3秒前
4秒前
缓慢晟睿完成签到,获得积分10
5秒前
5秒前
等待的含灵完成签到 ,获得积分10
6秒前
6秒前
001026Z完成签到,获得积分10
6秒前
6秒前
jluzz完成签到,获得积分10
6秒前
wenjian完成签到,获得积分10
7秒前
118QQ完成签到,获得积分10
7秒前
张慧仪完成签到 ,获得积分20
8秒前
Kelly完成签到,获得积分10
8秒前
yunna_ning完成签到,获得积分0
8秒前
心灵美从寒完成签到,获得积分10
8秒前
溜溜很优秀完成签到,获得积分10
9秒前
Gzl完成签到,获得积分10
9秒前
9℃完成签到 ,获得积分10
9秒前
二世小卒完成签到 ,获得积分0
9秒前
10秒前
FrozNineTivus完成签到,获得积分10
10秒前
小猴儿完成签到,获得积分10
10秒前
谷飞飞完成签到,获得积分10
10秒前
小虎同学完成签到,获得积分10
10秒前
星辰大海应助不远采纳,获得10
11秒前
11秒前
乐正一兰完成签到,获得积分10
11秒前
ljw完成签到,获得积分10
11秒前
11秒前
vin应助忧伤的觅珍采纳,获得60
12秒前
12秒前
阿星捌完成签到 ,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009093
求助须知:如何正确求助?哪些是违规求助? 3548906
关于积分的说明 11300209
捐赠科研通 3283436
什么是DOI,文献DOI怎么找? 1810365
邀请新用户注册赠送积分活动 886129
科研通“疑难数据库(出版商)”最低求助积分说明 811259