DHM-Net: Deep Hypergraph Modeling for Robust Feature Matching

超图 计算机科学 人工智能 模式识别(心理学) 匹配(统计) 特征(语言学) 稳健性(进化) 特征提取 算法 数学 统计 离散数学 语言学 哲学 生物化学 化学 基因
作者
Shunxing Chen,Guobao Xiao,Junwen Guo,Qiangqiang Wu,Jiayi Ma
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2024.3477916
摘要

We present a novel deep hypergraph modeling architecture (called DHM-Net) for feature matching in this paper. Our network focuses on learning reliable correspondences between two sets of initial feature points by establishing a dynamic hypergraph structure that models group-wise relationships and assigns weights to each node. Compared to existing feature matching methods that only consider pair-wise relationships via a simple graph, our dynamic hypergraph is capable of modeling nonlinear higher-order group-wise relationships among correspondences in an interaction capturing and attention representation learning fashion. Specifically, we propose a novel Deep Hypergraph Modeling block, which initializes an overall hypergraph by utilizing neighbor information, and then adopts node-to-hyperedge and hyperedge-to-node strategies to propagate interaction information among correspondences while assigning weights based on hypergraph attention. In addition, we propose a Differentiation Correspondence-Aware Attention mechanism to optimize the hypergraph for promoting representation learning. The proposed mechanism is able to effectively locate the exact position of the object of importance via the correspondence aware encoding and simple feature gating mechanism to distinguish candidates of inliers. In short, we learn such a dynamic hypergraph format that embeds deep group-wise interactions to explicitly infer categories of correspondences. To demonstrate the effectiveness of DHM-Net, we perform extensive experiments on both real-world outdoor and indoor datasets. Particularly, experimental results show that DHM-Net surpasses the state-of-the-art method by a sizable margin. Our approach obtains an 11.65% improvement under error threshold of 5° for relative pose estimation task on YFCC100M dataset. Code will be released at https://github.com/CSX777/DHM-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助Ll采纳,获得10
刚刚
刚刚
yu完成签到 ,获得积分10
刚刚
小蘑菇应助zzznznnn采纳,获得10
刚刚
Orange应助俊秀的白猫采纳,获得30
1秒前
深情安青应助小可采纳,获得10
1秒前
1秒前
情怀应助pearl采纳,获得10
1秒前
2秒前
所所应助cybbbbbb采纳,获得10
2秒前
果汁发布了新的文献求助10
2秒前
3秒前
3秒前
Lucas应助柚子采纳,获得10
3秒前
MADKAI发布了新的文献求助10
3秒前
4秒前
爆米花应助咕咕咕采纳,获得10
4秒前
zxy发布了新的文献求助10
4秒前
5秒前
醉人的仔发布了新的文献求助10
5秒前
daguan完成签到,获得积分10
5秒前
桐桐应助nikai采纳,获得10
5秒前
6秒前
7秒前
123完成签到,获得积分10
7秒前
善良香岚发布了新的文献求助10
7秒前
8秒前
8秒前
444完成签到,获得积分10
8秒前
任一发布了新的文献求助30
8秒前
莉莉发布了新的文献求助10
9秒前
Zoe发布了新的文献求助10
9秒前
Hover完成签到,获得积分10
9秒前
自然的茉莉完成签到,获得积分10
10秒前
10秒前
Mandy完成签到,获得积分10
10秒前
11秒前
脑洞疼应助qaq采纳,获得10
11秒前
世界尽头发布了新的文献求助10
11秒前
小二郎应助科研民工采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759