已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DHM-Net: Deep Hypergraph Modeling for Robust Feature Matching

超图 计算机科学 人工智能 模式识别(心理学) 匹配(统计) 特征(语言学) 稳健性(进化) 特征提取 算法 数学 统计 离散数学 语言学 哲学 生物化学 化学 基因
作者
Shunxing Chen,Guobao Xiao,Junwen Guo,Qiangqiang Wu,Jiayi Ma
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tip.2024.3477916
摘要

We present a novel deep hypergraph modeling architecture (called DHM-Net) for feature matching in this paper. Our network focuses on learning reliable correspondences between two sets of initial feature points by establishing a dynamic hypergraph structure that models group-wise relationships and assigns weights to each node. Compared to existing feature matching methods that only consider pair-wise relationships via a simple graph, our dynamic hypergraph is capable of modeling nonlinear higher-order group-wise relationships among correspondences in an interaction capturing and attention representation learning fashion. Specifically, we propose a novel Deep Hypergraph Modeling block, which initializes an overall hypergraph by utilizing neighbor information, and then adopts node-to-hyperedge and hyperedge-to-node strategies to propagate interaction information among correspondences while assigning weights based on hypergraph attention. In addition, we propose a Differentiation Correspondence-Aware Attention mechanism to optimize the hypergraph for promoting representation learning. The proposed mechanism is able to effectively locate the exact position of the object of importance via the correspondence aware encoding and simple feature gating mechanism to distinguish candidates of inliers. In short, we learn such a dynamic hypergraph format that embeds deep group-wise interactions to explicitly infer categories of correspondences. To demonstrate the effectiveness of DHM-Net, we perform extensive experiments on both real-world outdoor and indoor datasets. Particularly, experimental results show that DHM-Net surpasses the state-of-the-art method by a sizable margin. Our approach obtains an 11.65% improvement under error threshold of 5° for relative pose estimation task on YFCC100M dataset. Code will be released at https://github.com/CSX777/DHM-Net.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助fenmar采纳,获得10
2秒前
ww发布了新的文献求助10
2秒前
shadow发布了新的文献求助10
2秒前
Ava应助谨慎哈密瓜采纳,获得10
3秒前
3秒前
晓婷婷完成签到 ,获得积分10
5秒前
俊逸依丝发布了新的文献求助10
7秒前
huwenqi完成签到,获得积分20
8秒前
11秒前
12秒前
dnnnsns完成签到,获得积分10
13秒前
13秒前
赖晨靓发布了新的文献求助10
16秒前
难过的箴完成签到 ,获得积分10
16秒前
俊逸依丝完成签到,获得积分10
20秒前
fenmar完成签到,获得积分10
21秒前
冷静剑鬼完成签到,获得积分10
22秒前
huwenqi发布了新的文献求助10
22秒前
传奇3应助科研通管家采纳,获得50
22秒前
YifanWang应助科研通管家采纳,获得10
22秒前
我是老大应助科研通管家采纳,获得10
22秒前
隐形曼青应助科研通管家采纳,获得10
23秒前
23秒前
双黄应助科研通管家采纳,获得10
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
科研通AI2S应助科研通管家采纳,获得10
23秒前
24秒前
寂漉发布了新的文献求助10
27秒前
神勇的邑完成签到 ,获得积分10
29秒前
锌小子完成签到,获得积分10
36秒前
zc发布了新的文献求助10
36秒前
ww完成签到,获得积分10
36秒前
完美世界应助ppf采纳,获得10
39秒前
39秒前
舒服的吗喽完成签到 ,获得积分10
44秒前
大方烙发布了新的文献求助10
44秒前
44秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314174
求助须知:如何正确求助?哪些是违规求助? 2946559
关于积分的说明 8530555
捐赠科研通 2622218
什么是DOI,文献DOI怎么找? 1434412
科研通“疑难数据库(出版商)”最低求助积分说明 665277
邀请新用户注册赠送积分活动 650838