Persistent acute kidney injury biomarkers: A systematic review and meta-analysis

荟萃分析 急性肾损伤 医学 内科学 重症监护医学
作者
Keran Shi,Wei Jiang,Song Lin,Xianghui Li,Chuanqing Zhang,Luanluan Li,Yunfan Feng,Jiayan Yang,Tianwei Wang,Haoran Wang,Lulu Zhou,Jiangquan Yu,Ruiqiang Zheng
出处
期刊:Clinica Chimica Acta [Elsevier]
卷期号:564: 119907-119907
标识
DOI:10.1016/j.cca.2024.119907
摘要

Various biomarkers reportedly predict persistent acute kidney injury (AKI) despite their varying predictive performance across clinical trials. This study aims to compare the accuracy of various biomarkers in predicting persistent AKI in different populations and regions. In this meta-analysis, we searched for urinary C–C motif chemokine ligand 14 (CCL14), Tissue inhibitor of metalloproteinase-2&insulin-like growth factor-binding protein-7 (TIMP-2&IGFBP7), Neutrophil Gelatinase-Associated Lipocalin (NGAL), plasma Cystatin C (pCysC), Soluble urokinase plasminogen activator receptor (suPAR), Proenkephalin (PenK) and urinary dickkopf-3:urinary creatinine (uDKK3:uCr) from various databases including Medline, PubMed, Embase, and Cochrane. This was geared towards predicting persistent AKI in adults (>18 years). Hierarchically summarized subject work characteristic curves (HSROC) and diagnostic odds ratio (DOR) values were used to summarize the diagnostic accuracy of the biomarkers. Further, meta-regression and subgroup analyses were carried out to identify sources of heterogeneity as well as evaluate the best predictive biomarkers in different populations and regions. We screened 31 studies from 2,356 studies and assessed the diagnostic value of 7 biomarkers for persistent AKI. Overall, CCL14 had the best diagnostic efficacy with an AUC of 0.79 (95% CI 0.75–0.82), whereas TIMP-2 & IGFBP7, NGAL, and pCysC had diagnostic efficacy of 0.75 (95% CI 0.71–0.79), 0.71 (95% CI 0.67–0.75), and 0.7007, respectively. Due to a limited number of studies, PenK, uDKK3:uCr, and suPAR were not subjected to meta-analysis; however, relevant literature reported diagnostic efficacy above 0.70. Subgroup analyses based on population, region, biomarker detection time, AKI onset time, and AKI duration revealed that in the intensive care unit (ICU) population, the AUC of CCL14 was 0.8070, the AUC of TIMP-2 & IGFBP7 was 0.726, the AUC of pCysC was 0.72, and the AUC of NGAL was 0.7344; in the sepsis population, the AUC of CCL14 was 0.85, the AUC of TIMP-2&IGFBP7 was 0.7438, and the AUC of NGAL was 0.544; in the post-operative population, the AUC of CCL14 was 0.83–0.93, the AUC of TIMP-2&IGFBP7 was 0.71, and the AUC of pCysC was 0.683. Regional differences were observed in biomarker prediction of persistent kidney injury, with AUCs of 0.8558 for CCL14, 0.7563 for TIMP-2 & IGFBP7, and 0.7116 for NGAL in the Eurasian American population. In the sub-African population, TIMP-2 & IGFBP7 had AUCs of 0.7945, 0.7418 for CCL14, 0.7097 for NGAL, and 0.7007 for pCysC. for TIMP-2 & IGFBP7 was 0.7945, AUC for CCL14 was 0.7418, AUC for NGAL was 0.7097, and AUC for pCysC was 0.7007 in the sub-African population. Duration of biomarker detection, AKI onset, and AKI did not influence the optimal predictive performance of CCL14. Subgroup analysis and meta-regression of CCL14-related studies revealed that CCL14 is the most appropriate biomarker for predicting persistent stage 2–3 AKI, with heterogeneity stemming from sample size and AKI staging. This meta-analysis discovered CCL14 as the best biomarker to predict persistent AKI, specifically persistent stage 2–3 AKI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yulong完成签到 ,获得积分10
1秒前
热心的早晨完成签到,获得积分10
1秒前
如此纠结完成签到,获得积分10
1秒前
多多就是小豆芽完成签到 ,获得积分10
2秒前
2秒前
Owen应助Lwxbb采纳,获得10
2秒前
不戴眼镜的眼镜王蛇完成签到,获得积分10
2秒前
小小杜完成签到,获得积分10
2秒前
初心完成签到,获得积分20
2秒前
丽丽完成签到 ,获得积分10
2秒前
学术蟑螂发布了新的文献求助10
2秒前
文艺的竺完成签到,获得积分10
3秒前
小林太郎应助斯奈克采纳,获得20
3秒前
3秒前
情怀应助执笔曦倾年采纳,获得10
3秒前
3秒前
3秒前
3秒前
科研民工完成签到,获得积分10
4秒前
FR完成签到,获得积分10
4秒前
5秒前
小马甲应助浩浩大人采纳,获得10
5秒前
5秒前
小小杜发布了新的文献求助20
5秒前
打打应助袁国惠采纳,获得10
5秒前
5秒前
哈哈哈完成签到,获得积分10
6秒前
小张发布了新的文献求助10
6秒前
温柔若完成签到,获得积分10
6秒前
称心的问薇完成签到,获得积分10
7秒前
7秒前
高兴的半凡完成签到 ,获得积分10
8秒前
123完成签到,获得积分10
8秒前
Answer完成签到,获得积分10
8秒前
诚心凝旋发布了新的文献求助10
8秒前
孟柠柠完成签到,获得积分10
9秒前
9秒前
哈哈哈发布了新的文献求助10
9秒前
SYLH应助di采纳,获得10
10秒前
韭菜盒子完成签到,获得积分20
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740