A metaheuristic algorithmic framework for solving the hybrid flow shop scheduling problem with unrelated parallel machines

计算机科学 数学优化 元启发式 流水车间调度 作业车间调度 差异进化 初始化 局部搜索(优化) 粒子群优化 算法 地铁列车时刻表 数学 操作系统 程序设计语言
作者
Chuangfeng Zeng,Jianjun Liu
出处
期刊:Engineering Optimization [Informa]
卷期号:: 1-24 被引量:1
标识
DOI:10.1080/0305215x.2024.2372634
摘要

The hybrid flow shop scheduling problem (HFSP), as a realistic extension of the classical flow shop scheduling problem, widely exists in real-world industrial production systems. In practice, the fact that machines are unrelated is important and cannot be neglected. This study focuses on the HFSP with unrelated parallel machines (HFSP-UPM) to minimize the makespan. To address this problem, a hybrid representation that combines single-sequence coding and full-sequence coding is developed to search for solution space that is not covered by common encoding methods. An initialization block integrating random heuristic strategies is proposed for improving the quality of the initial sparrow swarm. To improve the diversity of a sparrow swarm further, a perturbation block embedded with a set of historical best positions and an enhancement strategy are developed. A critical set based local search block is designed for high-intensity local exploitation of promising regions when necessary. Several benchmark cases from the literature as well as some randomly generated instances characterized by the distribution of real data from factory studies are employed to participate in the test. The test results reveal the effectiveness of the proposed perturbation block and local search block. Compared to state-of-the-art metaheuristic algorithms, the enhanced sparrow search algorithm (ESSA) demonstrates higher convergence accuracy when handling instances. The value of the gap between a solution found by the ESSA and a feasible solution found by the mixed-integer programming (MIP) model can reach 0.6%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
习习发布了新的文献求助10
1秒前
1秒前
wanci应助drizzling采纳,获得10
1秒前
r93527005完成签到,获得积分10
1秒前
2秒前
霸气谷蕊完成签到 ,获得积分10
4秒前
羊羊羊完成签到,获得积分10
4秒前
4秒前
5秒前
科研通AI5应助WNL采纳,获得10
5秒前
Xuu完成签到,获得积分10
5秒前
外向的沅发布了新的文献求助10
5秒前
徐慕源发布了新的文献求助10
5秒前
夏哈哈完成签到 ,获得积分10
6秒前
默默海露完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
8秒前
迷路安阳发布了新的文献求助10
8秒前
8秒前
NexusExplorer应助Jolene66采纳,获得10
8秒前
医路有你完成签到,获得积分10
8秒前
9秒前
科研通AI5应助Sean采纳,获得10
9秒前
9秒前
超帅连虎完成签到,获得积分10
9秒前
皓月千里发布了新的文献求助10
9秒前
Grayball应助包容的剑采纳,获得10
9秒前
深情安青应助寒冷书竹采纳,获得10
10秒前
wbj0722完成签到,获得积分10
10秒前
JIAO完成签到,获得积分10
10秒前
10秒前
11秒前
852应助HopeStar采纳,获得10
11秒前
圆圆发布了新的文献求助30
12秒前
Orange应助Promise采纳,获得10
12秒前
一直发布了新的文献求助20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678