A metaheuristic algorithmic framework for solving the hybrid flow shop scheduling problem with unrelated parallel machines

计算机科学 数学优化 元启发式 流水车间调度 作业车间调度 差异进化 初始化 局部搜索(优化) 粒子群优化 算法 地铁列车时刻表 数学 操作系统 程序设计语言
作者
Chuangfeng Zeng,Jianjun Liu
出处
期刊:Engineering Optimization [Informa]
卷期号:: 1-24 被引量:1
标识
DOI:10.1080/0305215x.2024.2372634
摘要

The hybrid flow shop scheduling problem (HFSP), as a realistic extension of the classical flow shop scheduling problem, widely exists in real-world industrial production systems. In practice, the fact that machines are unrelated is important and cannot be neglected. This study focuses on the HFSP with unrelated parallel machines (HFSP-UPM) to minimize the makespan. To address this problem, a hybrid representation that combines single-sequence coding and full-sequence coding is developed to search for solution space that is not covered by common encoding methods. An initialization block integrating random heuristic strategies is proposed for improving the quality of the initial sparrow swarm. To improve the diversity of a sparrow swarm further, a perturbation block embedded with a set of historical best positions and an enhancement strategy are developed. A critical set based local search block is designed for high-intensity local exploitation of promising regions when necessary. Several benchmark cases from the literature as well as some randomly generated instances characterized by the distribution of real data from factory studies are employed to participate in the test. The test results reveal the effectiveness of the proposed perturbation block and local search block. Compared to state-of-the-art metaheuristic algorithms, the enhanced sparrow search algorithm (ESSA) demonstrates higher convergence accuracy when handling instances. The value of the gap between a solution found by the ESSA and a feasible solution found by the mixed-integer programming (MIP) model can reach 0.6%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
木子完成签到,获得积分10
4秒前
只是天仙子完成签到,获得积分10
5秒前
6秒前
小牛发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
hjkl完成签到,获得积分20
11秒前
续续完成签到,获得积分10
13秒前
小牛完成签到,获得积分10
19秒前
我是老大应助帅男采纳,获得10
22秒前
23秒前
24秒前
26秒前
善学以致用应助伶俐鹤轩采纳,获得10
26秒前
yellow完成签到,获得积分10
29秒前
有思想发布了新的文献求助10
30秒前
李健的小迷弟应助李贝宁采纳,获得10
30秒前
30秒前
32秒前
Allen完成签到,获得积分10
34秒前
清脆的孤菱完成签到 ,获得积分10
35秒前
胡说八道完成签到 ,获得积分10
36秒前
Sk发布了新的文献求助10
37秒前
qiu发布了新的文献求助10
38秒前
竹筏过海应助专一的傲白采纳,获得30
39秒前
科研通AI2S应助小超人哈里采纳,获得10
41秒前
专注的小蕾完成签到,获得积分10
41秒前
44秒前
46秒前
we1light完成签到 ,获得积分10
52秒前
Jasper应助文艺的土豆采纳,获得10
53秒前
56秒前
科目三应助红姐采纳,获得10
56秒前
58秒前
59秒前
雁过完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164253
求助须知:如何正确求助?哪些是违规求助? 2814985
关于积分的说明 7907327
捐赠科研通 2474608
什么是DOI,文献DOI怎么找? 1317573
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228