亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

YOLO-PEM: A Lightweight Detection Method for Young “Okubo” Peaches in Complex Orchard Environments

果园 环境科学 生态学 生物
作者
Jianping Jing,Shujuan Zhang,Haixia Sun,Rui Ren,Tianyu Cui
出处
期刊:Agronomy [MDPI AG]
卷期号:14 (8): 1757-1757 被引量:2
标识
DOI:10.3390/agronomy14081757
摘要

The intelligent detection of young peaches is the main technology of fruit-thinning robots, which is crucial for enhancing peach fruit quality and reducing labor costs. This study presents the lightweight YOLO-PEM model based on YOLOv8s to achieve high-precision and automatic detection of young “Okubo” peaches. Firstly, the C2f_P module was devised by partial convolution (PConv), replacing all C2f modules in YOLOv8s to achieve the model’s lightweight. Secondly, embedding the efficient multi-scale attention (EMA) module in the lightweight C2f_P_1 module of the backbone network enhanced the feature extraction capability and accuracy for young peaches. Finally, the MPDIoU loss function was utilized to replace the original CIoU loss function, which improved the detection accuracy of the bounding box while speeding up the convergence of the model. The experimental results demonstrate that the YOLO-PEM model achieved an average precision (AP) of 90.86%, F1 score of 86.70%, and model size of 16.1 MB, which was a 1.85% improvement in the AP, 0.85% improvement in the F1 score, and 5.3 MB reduction in the model size compared with YOLOv8s. The AP was 6.26%, 6.01%, 2.05%, 2.12%, and 1.87% higher compared with the other lightweight detection models YOLOv3-tiny, YOLOv4-tiny, YOLOv5s, YOLOv6s, and YOLOv7-tiny, respectively. Furthermore, the FPS of YOLO-PEM was 196.2 f·s-1, which can fulfill the demand for the real-time detection of young peaches. YOLO-PEM effectively detects young peaches in complex orchard environments and can offer a basis for the theoretical design of the vision system of the “Okubo” peach fruit-thinning robot and scientific management of orchards.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
留白完成签到 ,获得积分10
22秒前
26秒前
orixero应助紫津采纳,获得10
51秒前
1分钟前
紫津发布了新的文献求助10
1分钟前
1分钟前
1分钟前
longxingbo发布了新的文献求助30
1分钟前
三井库里发布了新的文献求助10
1分钟前
科研通AI5应助三井库里采纳,获得10
1分钟前
zsmj23完成签到 ,获得积分0
1分钟前
1分钟前
2分钟前
Songlin应助Murphy采纳,获得10
2分钟前
邹醉蓝完成签到,获得积分10
2分钟前
打打应助柏特瑞采纳,获得10
3分钟前
研友_nVWP2Z完成签到 ,获得积分10
3分钟前
3分钟前
Songlin关注了科研通微信公众号
3分钟前
柏特瑞完成签到,获得积分10
3分钟前
柏特瑞发布了新的文献求助10
3分钟前
weiwei完成签到,获得积分10
3分钟前
3分钟前
李健应助柏特瑞采纳,获得10
3分钟前
3分钟前
4分钟前
传奇3应助Songlin采纳,获得10
4分钟前
汉堡包应助紫津采纳,获得10
4分钟前
5分钟前
5分钟前
柏特瑞发布了新的文献求助10
5分钟前
紫津发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
紫津完成签到,获得积分10
5分钟前
5分钟前
李健应助柚子采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477472
求助须知:如何正确求助?哪些是违规求助? 3068936
关于积分的说明 9110158
捐赠科研通 2760407
什么是DOI,文献DOI怎么找? 1514892
邀请新用户注册赠送积分活动 700483
科研通“疑难数据库(出版商)”最低求助积分说明 699604