TF-EPI: an interpretable enhancer-promoter interaction detection method based on Transformer

增强子 计算生物学 转录因子 发起人 调节顺序 变压器 生物 基因 计算机科学 遗传学 基因表达 量子力学 物理 电压
作者
Lei Zhu,Weihang Zhang,Xin Zeng,Martin Loza,Sung‐Joon Park,Kenta Nakai
出处
期刊:Frontiers in Genetics [Frontiers Media]
卷期号:15
标识
DOI:10.3389/fgene.2024.1444459
摘要

The detection of enhancer-promoter interactions (EPIs) is crucial for understanding gene expression regulation, disease mechanisms, and more. In this study, we developed TF-EPI, a deep learning model based on Transformer designed to detect these interactions solely from DNA sequences. The performance of TF-EPI surpassed that of other state-of-the-art methods on multiple benchmark datasets. Importantly, by utilizing the attention mechanism of the Transformer, we identified distinct cell type-specific motifs and sequences in enhancers and promoters, which were validated against databases such as JASPAR and UniBind, highlighting the potential of our method in discovering new biological insights. Moreover, our analysis of the transcription factors (TFs) corresponding to these motifs and short sequence pairs revealed the heterogeneity and commonality of gene regulatory mechanisms and demonstrated the ability to identify TFs relevant to the source information of the cell line. Finally, the introduction of transfer learning can mitigate the challenges posed by cell type-specific gene regulation, yielding enhanced accuracy in cross-cell line EPI detection. Overall, our work unveils important sequence information for the investigation of enhancer-promoter pairs based on the attention mechanism of the Transformer, providing an important milestone in the investigation of cis-regulatory grammar.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
叶晓完成签到,获得积分10
刚刚
刚刚
可爱雅丫发布了新的文献求助10
1秒前
英姑应助abcdefghi__lmnop采纳,获得10
4秒前
doby发布了新的文献求助10
5秒前
6秒前
SCI完成签到 ,获得积分10
7秒前
8秒前
8秒前
doby完成签到,获得积分10
10秒前
叶y完成签到,获得积分20
11秒前
thx发布了新的文献求助40
12秒前
柒月发布了新的文献求助10
13秒前
姚玲完成签到,获得积分10
13秒前
越遇完成签到 ,获得积分10
14秒前
tt666完成签到,获得积分10
15秒前
16秒前
ste56完成签到,获得积分10
18秒前
ED应助科研通管家采纳,获得10
21秒前
量子星尘发布了新的文献求助10
21秒前
利利应助科研通管家采纳,获得10
21秒前
21秒前
ED应助科研通管家采纳,获得10
21秒前
21秒前
搜集达人应助科研通管家采纳,获得10
21秒前
yookia应助科研通管家采纳,获得10
21秒前
思源应助科研通管家采纳,获得30
21秒前
小二郎应助科研通管家采纳,获得10
21秒前
CipherSage应助科研通管家采纳,获得10
21秒前
天天快乐应助科研通管家采纳,获得30
21秒前
tiantian完成签到,获得积分10
27秒前
打打应助我要发nature采纳,获得10
28秒前
札七发布了新的文献求助10
28秒前
wasfey完成签到,获得积分10
30秒前
小韩同学完成签到,获得积分10
35秒前
依依发布了新的文献求助10
37秒前
迷你的小兔子完成签到,获得积分10
40秒前
40秒前
CX完成签到,获得积分10
41秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961020
求助须知:如何正确求助?哪些是违规求助? 3507251
关于积分的说明 11134825
捐赠科研通 3239661
什么是DOI,文献DOI怎么找? 1790305
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150